One way to speed up nearest neighbor classification is to replace the training set by a carefully chosen subset of “prototypes”.

Think of a good strategy for choosing prototypes from the training set, bearing in mind that the ultimate goal is good classification performance. Assume that 1-NN will be used.

Then implement your algorithm, and test it on the MNIST dataset, available at:

http://yann.lecun.com/exdb/mnist/index.html

On the due date, upload (to gradescope) a typewritten report containing the following elements (each labeled clearly).

1. **A short, high-level description of your idea for prototype selection.**
 A few sentences should suffice. These should be crystal clear: they should communicate the key idea to the reader.

2. **Concise and unambiguous pseudocode.**
 (Please do not submit any actual code.) Once again, clarity and conciseness are of the essence. Your scheme should take as input a labeled training set as well as a number \(M \), and should return a subset of the training set of size \(M \).

3. **Experimental results.**
 A (clearly labeled) table or graph of results showing classification performance on MNIST for a few values of \(M \), including at the very least \(M = 10000, 5000, 1000 \). In each case, you should compare the performance to that of uniform-random selection (that is, picking \(M \) of the training points at random). For any strategy with randomness, you should do several experiments and give error bars – give all relevant details, including the formulas you used for computing confidence intervals.
 The pseudocode and experimental details must contain all information needed to reproduce the results.

4. **Critical evaluation.**
 Is your method a clear improvement over random selection? Is there further scope for improvement? What would you like to try next?