CSE 250B: Homework 5 Solutions

Problem 1

1. Suppose $K(x, z) = \langle \phi(x), \phi(z) \rangle$ for some feature map ϕ, and let $\phi'(x) = \sqrt{c} \phi(x)$. Then, for all x and z,

$$K'(x, z) = cK(x, z) = c\langle \phi(x), \phi(z) \rangle = \langle \sqrt{c} \phi(x), \sqrt{c} \phi(z) \rangle$$

Therefore $K'(x, z)$ is a kernel corresponding to the feature map ϕ'.

2. Suppose x_0 is the x for which $K(x, x) > 0$. Consider the 1×1 kernel matrix $K' = K'(x_0, x_0)$ for the kernel K' and the data point x_0. Then, $K' = cK(x_0, x_0)$. If $z = 1$, then $z^\top K' z = cK(x_0, x_0) < 0$, which violates the kernel Positive Semi Definiteness (PSD) property. Thus K' is not a kernel.

3. Suppose $K_1(x, z) = \langle \phi^1(x), \phi^1(z) \rangle$ and $K_2(x, z) = \langle \phi^2(x), \phi^2(z) \rangle$. Then, for all x and z,

$$K'(x, z) = c_1 \langle \phi^1(x), \phi^1(z) \rangle + c_2 \langle \phi^2(x), \phi^2(z) \rangle = \langle \sqrt{c_1} \phi^1(x), \sqrt{c_1} \phi^1(z) \rangle + \langle \sqrt{c_2} \phi^2(x), \sqrt{c_2} \phi^2(z) \rangle$$

where $\phi'(x)$ is a concatenation of the feature maps $\sqrt{c_1} \phi^1(x)$ and $\sqrt{c_2} \phi^2(x)$. In other words, if the feature maps ϕ^1 and ϕ^2 have m_1 and m_2 coordinates respectively, then ϕ' has $m_1 + m_2$ coordinates; for any x, the first m_1 coordinates of $\phi'(x)$ are $\sqrt{c_1} \phi^1_1(x), \sqrt{c_1} \phi^1_2(x), \ldots, \sqrt{c_1} \phi^1_{m_1}(x)$ and the remaining m_2 coordinates of $\phi'(x)$ are $\sqrt{c_2} \phi^2_1(x), \sqrt{c_2} \phi^2_2(x), \ldots, \sqrt{c_2} \phi^2_{m_2}(x)$. Therefore $K'(x, z)$ is a kernel corresponding to the feature map ϕ'.

4. Suppose $K_1(x, z) = \langle \phi^1(x), \phi^1(z) \rangle$ and $K_2(x, z) = \langle \phi^2(x), \phi^2(z) \rangle$. If x and z are d-dimensional vectors, then, for all x and z,

$$K'(x, z) = K_1(x, z)K_2(x, z) = \langle \phi^1(x), \phi^1(z) \rangle \cdot \langle \phi^2(x), \phi^2(z) \rangle$$

$$= \left(\sum_i \phi^1_i(x) \phi^1_i(z) \right) \cdot \left(\sum_j \phi^2_j(x) \phi^2_j(z) \right) = \sum_{i,j=1}^{d} (\phi^1_i(x) \phi^2_j(x)) \cdot (\phi^1_i(z) \phi^2_j(z)) = \langle \phi'(x), \phi'(z) \rangle$$

where

$$\phi'(x) = \begin{bmatrix}
\phi^1_1(x) & \phi^2_1(x) \\
\phi^1_2(x) & \phi^2_2(x) \\
\phi^1_3(x) & \phi^2_3(x) \\
\vdots & \vdots
\end{bmatrix}$$

(1)

That is, ϕ' is a $d^2 \times 1$ feature map, which has a coordinate $\phi_{(i,j)}(\cdot)$ corresponding to each pair (i, j), $1 \leq i, j \leq d$, where $\phi_{(i,j)}(x) = \phi^1_i(x) \phi^2_j(x)$. Thus $K'(x, z)$ is a kernel corresponding to the feature map ϕ'.

Problem 2

1. $K(x, z)$ is not a kernel.

 For $x = [1, -1]$, we have $K(x, x) = 1 \times -1 = -1$. The corresponding kernel matrix $K = -1$. For $v = 1$, $v^\top K v = -1 < 0$, which violates the PSD property. Thus K is not a kernel.
2. \(K(x, z) \) is not a kernel.
 For \(x = [2, 2, \cdots] \), we have \(K(x, x) = 1 - \langle x, x \rangle = 1 - 4d \). The corresponding kernel matrix \(K = 1 - 4d \).
 For \(v = 1 \), \(v^T K v = 1 - 4d < 0 \), which violates the kernel PSD property for \(d > 0 \). Thus \(K \) is not a kernel.

3. \(K(x, z) \) is not a kernel.
 One way to prove that \(K \) is not a kernel is to show a counterexample to the PSD property. Pick
 \(x = [1, 0, \ldots, 0], z = [2, 0, \ldots, 0], v = [1, -1]^\top \). Then the kernel matrix
 \[
 A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}
 \]
 and \(v^T A v = -2 < 0 \), which violates positivity.
 A nice, second way to prove this is through contradiction. Suppose \(K \) a kernel, such that
 \(K(x, z) = \langle \phi(x), \phi(z) \rangle \). Recall the Cauchy-Schwarz Inequality for inner product, that we discussed in
 Lecture 2:
 \[
 \langle \phi(x), \phi(z) \rangle^2 \leq \langle \phi(x), \phi(x) \rangle \cdot \langle \phi(z), \phi(z) \rangle
 \]
 From this inequality,
 \[
 K(x, z)^2 \leq K(x, x) \cdot K(z, z)
 \]
 Suppose \(x \) is any vector with norm 1 and let \(z = 2x \). By the definition of \(K \), we have
 \(K(x, x) = \|x - x\|^2 = 0 \) and \(K(x, x) \cdot K(z, z) = 0 \). However \(K(x, z) = \|x - 2x\|^2 = 1 > K(x, x) \cdot K(z, z) \),
 which leads to a contradiction! Thus \(K \) is not a kernel.

4. \(K(x, z) \) is a kernel corresponding to the feature map \(\phi(x) = f(x_1, x_2) \).

5. \(K(x, z) \) is a kernel.
 Recall that \(a^2 - b^2 = (a - b) \cdot (a + b) \)
 Hence, we have
 \[
 \frac{1 - \langle x, z \rangle^2}{1 - \langle x, z \rangle} = 1 + \langle x, z \rangle
 \]
 (4)
 In the above equation, we can rewrite 1 as \(\langle x, z \rangle^0 \)
 Thus, we can now write, \(K(x, z) = K_0(x, z) + K_1(x, z) \). In Problem 1, we saw that the sum or product
 of two kernels is also a kernel. We know that \(K_0(x, z) \) and \(K_1(x, z) \) are both kernels.
 The feature map \(\phi_0(x) \) corresponding \(K_0(x, z) \) is
 \[
 \phi_0(x) = 1
 \]
 (5)
 \(K_1(x, z) \) corresponds to the feature map
 \[
 \phi_1(x) = x
 \]
 (6)
 Using Problem 1 Part 3, \(K(x, z) = K_0(x, z) + K_1(x, z) \) is a kernel corresponding to the feature map \(\phi' \),
 where for any \(x \), \(\phi'(x) \) is a concatenation of the feature maps \(\phi_0(x) \) and \(\phi_1(x) \).

6. \(K(x, z) \) is a kernel.
 Let \(K_i(x, z) = \min(x_i, z_i) \). From Problem 1, we know that the sum of two kernels \(K_1 \) and \(K_2 \) is also a
 kernel whose corresponding feature map is the concatenation of the feature maps corresponding to \(K_1 \)
 and \(K_2 \). Thus if we can find the feature maps for all \(K_i(x, z) \), then we can get the feature map for
 \(K(x, z) \) by concatenating these maps. Consider following feature map:
 \[
 \phi_i(x) = [f_1(x_1), f_2(x_1), \ldots, f_{100}(x_i)]^\top
 \]
 (7)
where \(f_k(t) = I(t \geq k) = \begin{cases} 1 & t \geq k \\ 0 & t < k \end{cases} \). Without loss of generality, suppose that \(x_i \leq z_i \). Then \(\phi_i(x) = [1, \ldots, 1, 0, \ldots, 0]^\top \) where only the first \(x_i \) entries are 1. Analogously, \(\phi_i(z) = [1, \ldots, 1, 0, \ldots, 0]^\top \) where only the first \(z_i \) entries are 1. Then

\[
\langle \phi_i(x), \phi_i(z) \rangle = \sum_{i=1}^{x_i} 1 \cdot 1 + \sum_{i=x_i+1}^{z_i} 0 \cdot 1 + \sum_{i=z_i+1}^{100} 0 \cdot 0 = x_i = \min(x_i, z_i)
\]

Therefore \(K_i(x, z) \) is a kernel corresponding to the feature map \(\phi_i(x) = [f_1(x_i), f_2(x_i), \ldots, f_{100}(x_i)]^\top \), and \(K(x, z) \) is a kernel corresponding to the feature map \(\phi(x) \) which is a concatenation of the feature maps \(\phi_1(x), \phi_2(x), \ldots, \phi_d(x) \).

7. \(K(x, z) \) is a kernel.

Let \(K_i(x, z) = 1 + x_i z_i \), then \(K(x, z) = \prod_{i=0}^{d} K_i(x) \). From Problem 1, we know that the product of two kernels is also a kernel. Since \(K_i(x, z) \) is a kernel corresponding to the feature map \(\phi_i(x) = [1, x_i]^\top \), \(K(x, z) \) is also a kernel. More specifically, \(K(x, z) \) is a kernel corresponding to the feature map \(\phi(x) \), where for any \(x \), \(\phi(x) \) has \(2^d \) coordinates, one corresponding to each subset \(S \) of \(\{1, 2, \ldots, d\} \). \(\phi_S(x) \), the coordinate of \(\phi(x) \) corresponding to the set \(S \) is \(\prod_{i \in S} x_i \). This kernel is called the All Subsets kernel.

8. \(K(x, z) \) is not a kernel.

One way to prove this is by showing a violation of the PSD property. Let \(x = [0, \ldots, 0], z = [1, 0, \ldots, 0] \) and \(v = [1, -1]^\top \). Then the kernel matrix

\[
K = \begin{bmatrix} K(x, x) & K(x, z) \\ K(z, x) & K(z, z) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}
\]

Thus, \(v^\top A v = -1 < 0 \), which violates positivity.

Another nice way is through a violation of the Cauchy-Schwartz inequality. Consider \(x = [0, \ldots, 0] \) and \(z = [1, 0, \ldots, 0] \). Then \(K(x, x) = 0 \), \(K(x, z) = K(z, z) = 1 \), which violates Cauchy-Schwarz inequality – that is \(K(x, z)^2 \geq K(x, x) \cdot K(z, z) \).

Problem 3

1. First, we can compute the marginal distributions of \(Y \) and \(Z \) as follows,

<table>
<thead>
<tr>
<th>(y)</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P(Y = y))</td>
<td>(\frac{2}{5})</td>
<td>(\frac{3}{5})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(z)</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P(Z = z))</td>
<td>(\frac{9}{20})</td>
<td>(\frac{11}{20})</td>
</tr>
</tbody>
</table>

Then, by definition of conditional probability, i.e. \(P(X = x | Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)} \), we can get the conditional distributions of \(X | Y \) as follows.

<table>
<thead>
<tr>
<th>(x)</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P(X = x</td>
<td>Y = 0))</td>
<td>(\frac{1}{7})</td>
</tr>
<tr>
<td>(P(X = x</td>
<td>Y = 1))</td>
<td>(\frac{1}{5})</td>
</tr>
</tbody>
</table>

Similarly we have the conditional distributions of \(X | Z \) as follows,

<table>
<thead>
<tr>
<th>(x)</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P(X = x</td>
<td>Z = 0))</td>
<td>(\frac{1}{5})</td>
</tr>
<tr>
<td>(P(X = x</td>
<td>Z = 1))</td>
<td>(\frac{3}{11})</td>
</tr>
</tbody>
</table>
2. By the definition of conditional entropy, \(H(X|Y) = P(Y = 0)H(X|Y = 0) + P(Y = 1)H(X|Y = 1) \).

\[
H(X|Y = 0) = -P(X = 0|Y = 0) \log P(X = 0|Y = 0) - P(X = 1|Y = 0) \log P(X = 1|Y = 0)
= -\frac{1}{2} \log \frac{1}{2} - \frac{1}{2} \log \frac{1}{2}
= \log 2
\]

Similarly we have

\[
H(X|Y = 1) = -P(X = 0|Y = 1) \log P(X = 0|Y = 1) - P(X = 1|Y = 1) \log P(X = 1|Y = 1)
= -\frac{1}{6} \log \frac{1}{6} - \frac{5}{6} \log \frac{5}{6}
= \log 6 - \frac{5}{6} \log 5
\]

Thus

\[
H(X|Y) = P(Y = 0)H(X|Y = 0) + P(Y = 1)H(X|Y = 1)
= \frac{2}{5} \log 2 + \frac{3}{5} \left(\log 6 - \frac{5}{6} \log 5 \right)
= \frac{2}{5} \log 2 + \frac{3}{5} \log 6 - \frac{1}{2} \log 5
\]

For \(H(X|Z) \), we can get

\[
H(X|Z = 0) = -P(X = 0|Z = 0) \log P(X = 0|Z = 0) - P(X = 1|Z = 0) \log P(X = 1|Z = 0)
= -\frac{1}{3} \log \frac{1}{3} - \frac{2}{3} \log \frac{2}{3}
= \log 3 - \frac{2}{3} \log 2
\]

Similarly we have

\[
H(X|Z = 1) = -P(X = 0|Z = 1) \log P(X = 0|Z = 1) - P(X = 1|Z = 1) \log P(X = 1|Z = 1)
= -\frac{3}{11} \log \frac{3}{11} - \frac{8}{11} \log \frac{8}{11}
= \log 11 - \frac{3}{11} \log 3 - \frac{8}{11} \log 8
\]

Thus

\[
H(X|Z) = P(Z = 0)H(X|Z = 0) + P(Z = 1)H(X|Z = 1)
= \frac{9}{20} \left(\log 3 - \frac{2}{3} \log 2 \right) + \frac{11}{20} \left(\log 11 - \frac{3}{11} \log 3 - \frac{8}{11} \log 8 \right)
= -\frac{3}{2} \log 2 + \frac{3}{10} \log 3 + \frac{11}{20} \log 11
\]

Using natural logarithm, the numerical values are shown as follows.

\(H(X	Y) = 0 \)	0.693147180560
\(H(X	Y) = 1 \)	0.450561208866
\(H(X	Y) \)	0.547595597544
\(H(X	Z = 0) \)	0.63651416829
\(H(X	Z = 1) \)	0.5859526183
\(H(X	Z) \)	0.6087053158

3. From the table above, \(H(X|Y) < H(X|Z) \). This suggests that there is less uncertainty in \(X \) when given \(Y \) than when given \(Z \). Therefore gene A is more informative about the cancer.
Problem 4

1. False.
 Counterexample: Consider a classifier for data which uses one feature (called Feature1).

 Figure 1: Two Decision Trees which are equal (see definition in question) but have different structures

 Feature1 < 0.75
 Yes
 Predict 0
 No
 Predict 1

 Feature1 < 0.5
 Yes
 Predict 0
 No
 Predict 1

2. False.
 If \(T \) and \(T' \) produce zero error on the same training set \(S \subseteq \mathcal{X} \), then, \(\forall x \in S, T(x) = T'(x) \). However, the training set typically does not include all elements in feature space \(\mathcal{X} \). Thus, there exist such \(x_0 \in \mathcal{X} - S \) that \(T(x_0) \neq T'(x_0) \). For example, consider the following training set:

<table>
<thead>
<tr>
<th>Feature 1</th>
<th>Feature 2</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

 For training set above, the two decision trees shown in Figure 2 both produce zero error. However, for the point \(x_1 = (0, 1) \) or the point \(x_2 = (1, 0) \), these two trees would give different predictions. Hence they are not equal.

 Figure 2: Two Decision Trees with Zero Error on \(S \)

Problem 5

For this question, we assume that ties are always broken in a consistent manner for both the \(k \)-NN and ID3 decision tree algorithms.

\(k \)-NN. We will obtain equal \(k \)-NN classifiers before and after a space transform for an arbitrary data set, if and only if, the following relative distance condition holds: for any three points \(x, x_p \) and \(x_q \) in the original space, \(d(x, x_p) \geq d(x, x_q) \) implies \(d(z, z_p) \geq d(z, z_q) \), where \(z, z_p \) and \(z_q \) are the points after rescaling. In other words, we need to ensure that in all cases, the nearest neighbors of a point in the original space are still the nearest neighbors in the rescaled space.

In the case of a uniform scaling factor (all \(\alpha^j = \alpha \)), the distance between any two points \(z_1 \) and \(z_2 \) in the rescaled space is,

\[
d(z_1, z_2) = \sqrt{\sum_j (z_1^j - z_2^j)^2} = \sqrt{\sum_j (\alpha x_1^j - \alpha x_2^j)^2} = \alpha \sqrt{\sum_j (x_1^j - x_2^j)^2} = \alpha d(x_1, x_2),
\]
This is simply the distance in the original space scaled by a constant α. Clearly the relative distance condition holds. In particular, this means that the training points that are the nearest neighbors of x in the original space remain the nearest neighbors of z in the rescaled space, therefore prediction for x remains the same as the prediction for z.

For nonuniform scaling factors, the relative distance condition does not necessarily hold. One extreme example is if $\alpha^1 = 1, \alpha^2 = 0.0001$ (a very small quantity). The transform now essentially projects each point to the x-axis (although the point will be not be exactly on the axis). Consider the training points (1,0) with label 0 and (0,1) with label 1, and a test example (0.1, 0). In the original space, (0.1, 0) is closer to (1,0) than (0,1) and will be assigned label 0; in the rescaled space however, it will be rescaled to be (0.1, 0), will be closer to (0,1) (now rescaled as (0, 0.001)), and thus will be assigned label 1 by the 1-NN classifier. Therefore in this case, we are not guaranteed to get the same k-NN classifier.

ID3 Decision Tree. The decision trees produced by the ID3 algorithm will be equal in both cases, assuming that ties are broken in a consistent manner. We can show this by induction. In what follows, we will say that a splitting rule (j, t) in the original space is equal to a splitting rule $(j, \alpha^t t)$ in the rescaled space.

We run the ID3 algorithm on S and S' simultaneously, and maintain the following invariants at each step of the algorithm. If T and T' are the trees built based on S and S' respectively, then, (a) T and T' have the same structure, (b) for each internal node v in T, the splitting rule at v is equal to the splitting rule at the corresponding internal node v' in T' and (c) if D is the dataset associated with a leaf node in T, then the dataset associated with the corresponding leaf node in T' is the rescaled version of points in D.

The invariant holds at the beginning of the algorithm, as the only (leaf) node is the root, which is associated with S in T and S' in T'. Suppose the invariant holds at step t of the algorithm, and at step $t + 1$ we split a node v in T such that the dataset associated with v is D. If the splitting rule used is (j, t), then, this splitting rule has the highest information gain among all the possible splitting rules. Observe that as the corresponding node v' in T' is associated with a scaled version D' of D, for any j and t, the information gain of a splitting rule $(j, \alpha^t t)$ at v' is equal to the information gain of the splitting rule (j, t) in v. Thus, assuming that ties are broken consistently, we will pick the splitting rule $(j, \alpha^t t)$ to split node v'. Thus invariants (a) and (b) are maintained after step $t + 1$. Finally, invariant (c) is also maintained as the subset of D for which feature j is $\leq t$ is exactly equal to the subset of D' for which feature j is $\leq \alpha^t t$.

Thus, at the end of the ID3 decision tree algorithm, we arrive at two trees T and T' which have exactly the same structure, where the corresponding nodes v and v' have equal splitting rules. Thus if a test example x follows a path P in T from the root to the leaf, its rescaled version z will follow exactly the same path in T' from root to leaf and will be classified the same way. Therefore the two decision trees will be equal.

Perceptron. For a uniform scaling factor α, we claim that at any step, if the hyperplane normal in the original space is w, then the hyperplane normal in the rescaled space must be αw. If this claim is true, then the classifiers in the two spaces will be equal, because as $\alpha > 0$, $\text{sign}(\langle w, x_t \rangle) = \text{sign}(\langle \alpha w, z_t \rangle) = \text{sign}(\langle \alpha w, \alpha x_t \rangle)$.

We prove this by induction. The base case is trivial because w is initialized to 0 in both spaces. Then suppose our claim is true for step $t - 1$, we show that the claim still holds at step t. At step t the algorithm predicts the label for the training data (x_t, y_t) in the original space and training data $(z_t = \alpha x_t, y_t)$ in the rescaled space. It is easy to see that the prediction result is the same for the classifiers in both spaces as $\alpha > 0$. If the result is correct, then no change is made to either w. If the result is wrong, the normal in the original space is updated to $w + y_t x_t$, while in the rescaled space, the normal is updated to $\alpha w + y_t z_t = \alpha (w + y_t x_t)$. Thus the claim still holds at this step. Therefore the Perceptron algorithm produces equal classifiers in both spaces.
For non-uniform α’s, the two classifiers are not equal. One counter-example is given below. There is only one positive training data $(2, -2)$, which becomes $(1, -2)$ in the rescaled space. Consider the test data $(2, 1)$, and the rescaled version $(1, 1)$. The resulting classifier classifies them into different labels.

Behavior under scaling transformations. In case of uniform scaling transformations (same α^i) across all features/dimensions, all the 3 algorithms are equally robust. However, in case of non-uniform scaling transformations (different α^i), ID3 Decision Trees are more robust compared to k-NN and Perceptrons.