Lecture 6: Software Defined Networks

CSE 222A: Computer Communication Networks
Alex C. Snoeren

Thanks: Nick McKeown, Jeremy Stribling, Kai & Lin
Lecture 6 Overview

- Onix discussion
- Datacenter introduction
What is a Network OS?

- ONIX provides abstractions for network management

- Basic functionalities:
 - State distribution primitives between controllers and network elements.
 - Virtualized network elements

- A global view & control of the network
 - Very different from Active Networking vision (node local)
Onix Architecture

Server 1
- Network Control Logic
- NIB
- Switch Import / Export
- Distribution I / E

Server N
- Network Control Logic
- NIB
- Distribution I / E
- Switch Import / Export

Management Connectivity Network Infrastructure

Managed Physical Network Infrastructure
OpenFlow

“If header = x, send to port 4”
“If header = y, overwrite header with z, send to ports 5,6”
“If header = $?$, send to me”
Basic OF Operations

- Match arbitrary bits in headers:
 - Match on any header, or new header
 - Allows any flow granularity

<table>
<thead>
<tr>
<th>Header</th>
<th>Data</th>
</tr>
</thead>
</table>

Match: 1000x01xx0101001x

- Action
 - Forward to port(s), drop, send to controller
 - Overwrite header with mask, push or pop
 - Forward at specific bit-rate
Design Requirements

- **Generality**: Support a wide range of network management applications
- **Scalability**: No inherent limitations due to the platform
- **Reliability**: Graceful failure handling
- **Performance**: Sufficient performance
Onix API

- Developers program against a network graph
- Nodes represent physical network entities
The NIB is the focal point of the system
- State for applications to access
- External state changes imported into it
- Local state changes exported from it
Scalability

- Physical controller becomes a bottleneck:
 - Memory: to keep NIB
 - CPU and bandwidth: to process events

- This is a classic distributed systems problem
 - Partitioning
 - Aggregation
Multiple dimensions available to applications:
- Onix instances with different computations tasks
- Onix instances have only subsets of the NIB
- Switches connect to a subset of Onix instances
Aggregating for Scale

- Reduce fidelity of information before disseminating within the cluster
Aggregating for Scale

- Reduce fidelity of information before disseminating within the cluster
Consistency

- Onix provides two storage options
 - Replicated transactions (SQL) storage
 - One-hop memory-based DHT

- Do we need strong consistency for forwarding state between the controller and routers?

- Do we need strong consistency for NIB stored in controllers?

- Is it reasonable to ask applications for consistency preference and resolving conflicts?
Reliability

- **Network Element & Link Failures**: Applications' responsibility

- **Connectivity Infrastructure Failures**: Assumed reliable

- **Onix Failures**: Onix provides distributed coordination facilities provided for app failover
Discussion

- What are the security implications of Onix?
- Is Onix flexible and general enough for networking management?
- Are there applications you can run on a centralized network but not on a distributed one?
Cloud Computing

- **Elastic resources**
 - Expand and contract resources
 - Pay-per-use
 - Infrastructure on demand

- **Multi-tenancy**
 - Multiple independent users
 - Security and resource isolation
 - Amortize the cost of the (shared) infrastructure

- **Flexible service management**
 - Resiliency: isolate failure of servers and storage
 - Workload movement: move work to other locations
Cloud Service Models

- **Software as a Service (Saas)**
 - Provider licenses applications to users as a service
 - e.g., customer relationship management, email, …
 - Avoid costs of installation, maintenance, patches, …

- **Platform as a Service (Paas)**
 - Provider offers software platform for building applications
 - e.g., Google’s App-Engine
 - Avoid worrying about scalability of platform

- **Infrastructure as a Service (Iaas)**
 - Provider offers raw computing, storage, and network
 - e.g., Amazon’s Elastic Computing Cloud (EC2)
 - Avoid buying servers and estimating resource needs
Multi-Tier Applications

- Applications consist of tasks
 - Many separate components
 - Running on different machines

- Commodity computers
 - Many general-purpose computers
 - Not one big mainframe
 - Easier scaling
Host Virtualization

- Multiple virtual machines on one physical machine
- Applications run unmodified as on real machine
- VM can migrate from one computer to another
VMM Virtual Switches

Diagram showing the interaction between virtual machines (VMs), applications, guest operating systems (Guest OS), virtual switch (VS), hypervisor, physical Ethernet adapter, and external layer 2 Ethernet switch.
Top-of-Rack Architecture

- Rack of servers
 - Commodity servers
 - And top-of-rack switch

- Modular design
 - Preconfigured racks
 - Power, network, and storage cabling

- Aggregate to the next level
Extreme Modularity

- Containers
- Many containers
Data Center Challenges

- Traffic load balance
- Support for VM migration
- Achieving bisection bandwidth
- Power savings / Cooling
- Network management (provisioning)
- Security (dealing with multiple tenants)
Data Center Costs

- James Hamilton published basic 2008 breakdown
- Servers: 45%
 - CPU, memory, disk
- Infrastructure: 25%
 - UPS, cooling, power distribution
- Power draw: 15%
 - Electrical utility costs
- Network: 15%
 - Switches, links, transit
For Next Class…

- Read P4 paper

- Submit project ideas by tonight
 - Email me & TA initial idea(s)

- Project groups will be due next Tuesday
 - I will post on Piazza on Friday so you can find like-minded teammages.