Informative projections

Piece-wise constant

Piece-wise linear
Dimensionality reduction

Why reduce the number of features in a data set?

1. It reduces storage and computation time.
2. High-dimensional data often has a lot of redundancy.
3. Remove noisy or irrelevant features.
Dimensionality reduction

Why reduce the number of features in a data set?

1. It reduces storage and computation time.
2. High-dimensional data often has a lot of redundancy.
3. Remove noisy or irrelevant features.

Example: are all the pixels in an image equally informative?

If we were to choose a few pixels to discard, which would be the prime candidates?
Eliminating low variance coordinates

MNIST: what fraction of the total variance lies in the 100 (or 200, or 300) coordinates with lowest variance?
The effect of correlation

Suppose we wanted just one feature for the following data.

\[
\max_{\mathbf{w}, b} \text{Var} \left[\mathbf{w}^\top \mathbf{x} + b \right]
\]

\[
\operatorname{proj}_\mathbf{u} (x)
\]
The effect of correlation

Suppose we wanted just one feature for the following data.

This is the **direction of maximum variance**.
Comparing projections
Projection: formally

What is the projection of $x \in \mathbb{R}^d$ in the direction $u \in \mathbb{R}^d$?

Assume u is a unit vector (i.e. $\|u\| = 1$).
Projection: formally

What is the projection of $x \in \mathbb{R}^d$ in the direction $u \in \mathbb{R}^d$? Assume u is a unit vector (i.e. $\|u\| = 1$).

Projection is

$$x \cdot u = u \cdot x = u^T x = \sum_{i=1}^{d} u_i x_i.$$
Examples

What is the projection of \(x = \begin{pmatrix} 2 \\ 3 \end{pmatrix} \) along the following directions?

1. The \(x_1 \)-axis?

2. The direction of \(\begin{pmatrix} 1 \\ -1 \end{pmatrix} \)?

\(\mathbf{n} = \begin{pmatrix} -1 \\ 1 \end{pmatrix} \)
The best direction

Suppose we need to map our data \(x \in \mathbb{R}^d \) into just one dimension:

\[x \mapsto u \cdot x \quad \text{for some unit direction } u \in \mathbb{R}^d \]

What is the direction \(u \) of maximum variance?
The best direction

Suppose we need to map our data $x \in \mathbb{R}^d$ into just one dimension:

$$x \mapsto u \cdot x \quad \text{for some unit direction } u \in \mathbb{R}^d$$

What is the direction u of maximum variance?

Useful fact 1:

- Let Σ be the $d \times d$ covariance matrix of X.
- The variance of X in direction u (the variance of $X \cdot u$) is:

$$\sum_u \left(u^T \Sigma u \right) = \sum_u \text{Var}(p_{x'\mid \cdot \cdot})$$
Best direction: example

Here covariance matrix $\Sigma = \begin{pmatrix} 1 & 0.85 \\ 0.85 & 1 \end{pmatrix}$
The best direction

Suppose we need to map our data $x \in \mathbb{R}^d$ into just one dimension:

$$x \mapsto u \cdot x$$

for some unit direction $u \in \mathbb{R}^d$

What is the direction u of maximum variance?

Useful fact 1:

- Let Σ be the $d \times d$ covariance matrix of X.
- The variance of X in direction u is given by $u^T \Sigma u$.
The best direction

Suppose we need to map our data $x \in \mathbb{R}^d$ into just one dimension:

$$x \mapsto u \cdot x$$

for some unit direction $u \in \mathbb{R}^d$

What is the direction u of maximum variance?

Useful fact 1:

- Let Σ be the $d \times d$ covariance matrix of X.
- The variance of X in direction u is given by $u^T \Sigma u$.

Useful fact 2:

- $u^T \Sigma u$ is maximized by setting u to the first eigenvector of Σ.
- The maximum value is the corresponding eigenvalue.
Best direction: example

Direction:
first eigenvector of the 2×2 covariance matrix of the data.
Best direction: example

\[
\begin{align*}
 & \max \quad \text{Var} (\text{proj}_{u_2}(X)) \\
 \text{s.t.} \quad u_2 \perp u_1 \\
 \end{align*}
\]

Direction: \textbf{first eigenvector} of the \(2 \times 2\) covariance matrix of the data.

Projection onto this direction: the top \textbf{principal component} of the data
Projection onto multiple directions

Projecting \(x \in \mathbb{R}^d \) into the \(k \)-dimensional subspace defined by vectors \(u_1, \ldots, u_k \in \mathbb{R}^d \).
Projection onto multiple directions

Projecting $x \in \mathbb{R}^d$ into the k-dimensional subspace defined by vectors $u_1, \ldots, u_k \in \mathbb{R}^d$.

This is easiest when the u_i’s are orthonormal:

- They have length one.
- They are at right angles to each other: $u_i \cdot u_j = 0$ when $i \neq j$
Projection onto multiple directions

Projecting $x \in \mathbb{R}^d$ into the k-dimensional subspace defined by vectors $u_1, \ldots, u_k \in \mathbb{R}^d$.

This is easiest when the u_i's are orthonormal:

- They have length one.
- They are at right angles to each other: $u_i \cdot u_j = 0$ when $i \neq j$

The projection is a k-dimensional vector:

$$ (x \cdot u_1, x \cdot u_2, \ldots, x \cdot u_k) = \begin{pmatrix} \vdots \end{pmatrix} \begin{pmatrix} u_1 & u_2 & \cdots & u_k \end{pmatrix} \begin{pmatrix} x \end{pmatrix} \quad \text{call this } U^T $$

U is the $d \times k$ matrix with columns u_1, \ldots, u_k.

Projection onto multiple directions: example

E.g. project data in \mathbb{R}^4 onto the first two coordinates.
Projection onto multiple directions: example

E.g. project data in \mathbb{R}^4 onto the first two coordinates.

Take vectors $u_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$, $u_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$ (notice: orthonormal)

Write $U^T = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$
Projection onto multiple directions: example

E.g. project data in \mathbb{R}^4 onto the first two coordinates.

Take vectors $u_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$, $u_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$ (notice: orthonormal)

Write $U^T = \begin{pmatrix} u_1 & u_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$

The projection of $x \in \mathbb{R}^4$ is $U^T x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$
The best k-dimensional projection

Let Σ be the $d \times d$ covariance matrix of X. In $O(d^3)$ time, we can compute its eigendecomposition, consisting of

- real eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_d$
- corresponding eigenvectors $u_1, \ldots, u_d \in \mathbb{R}^d$ that are orthonormal (unit length and at right angles to each other)

Fact: Suppose we want to map data $X \in \mathbb{R}^d$ to just k dimensions, while capturing as much of the variance of X as possible. The best choice of projection is:

$$x \mapsto (u_1 \cdot x, u_2 \cdot x, \ldots, u_k \cdot x),$$

where u_i are the eigenvectors described above. This projection is called principal component analysis (PCA).
The best k-dimensional projection

Let Σ be the $d \times d$ covariance matrix of X. In $O(d^3)$ time, we can compute its eigendecomposition, consisting of

- real eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_d$
- corresponding eigenvectors $u_1, \ldots, u_d \in \mathbb{R}^d$ that are orthonormal (unit length and at right angles to each other)

Fact: Suppose we want to map data $X \in \mathbb{R}^d$ to just k dimensions, while capturing as much of the variance of X as possible. The best choice of projection is:

$$x \mapsto (u_1 \cdot x, u_2 \cdot x, \ldots, u_k \cdot x),$$

where u_i are the eigenvectors described above.

This projection is called **principal component analysis** (PCA).
Example: MNIST

Contrast coordinate projections with PCA:
Applying PCA to MNIST: examples

Reconstruct this original image from its PCA projection to k dimensions.

$k = 200$

$k = 150$

$k = 100$

$k = 50$
Applying PCA to MNIST: examples

Reconstruct this original image from its PCA projection to k dimensions.

$k = 200$

$k = 150$

$k = 100$

$k = 50$

How do we get these reconstructions?
Reconstruction from a 1-d projection

Projection onto \mathbb{R}:

Reconstruction in \mathbb{R}^2:
Reconstruction from multiple projections

Projecting into the k-dimensional subspace defined by orthonormal $u_1, \ldots, u_k \in \mathbb{R}^d$.

The projection of x is a k-dimensional vector:

$$(x \cdot u_1, x \cdot u_2, \ldots, x \cdot u_k) = \begin{pmatrix} u_1 \quad u_2 \quad \ldots \quad u_k \end{pmatrix}^T x$$

call this U^T
Reconstruction from multiple projections

Projecting into the k-dimensional subspace defined by orthonormal $u_1, \ldots, u_k \in \mathbb{R}^d$.

The projection of x is a k-dimensional vector:

$$\begin{pmatrix} x \cdot u_1, x \cdot u_2, \ldots, x \cdot u_k \end{pmatrix} = \begin{pmatrix} u_1 \to \ldots \to u_k \to \ldots \to u_2 \to u_1 \end{pmatrix} \begin{pmatrix} x \end{pmatrix} \quad \text{call this } U^T$$

The reconstruction from this projection is:

$$(x \cdot u_1)u_1 + (x \cdot u_2)u_2 + \cdots + (x \cdot u_k)u_k = UU^T x.$$
MNIST: image reconstruction

Reconstruct this original image x from its PCA projection to k dimensions.

Reconstruction $UU^T x$, where U's columns are top k eigenvectors of Σ.
Linear algebra: eigenvalues and eigenvectors
Linear algebra: eigenvalues and eigenvectors
Linear algebra: eigenvalues and eigenvectors
The linear function defined by a matrix

- Any matrix M defines a linear function, $x \mapsto Mx$. If M is a $d \times d$ matrix, this maps \mathbb{R}^d to \mathbb{R}^d.

$$
\begin{bmatrix}
2 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 10
\end{bmatrix}
\begin{bmatrix}
\begin{array}{c}
x_1 \\
x_2 \\
x_3
\end{array}
\end{bmatrix}
=
\begin{bmatrix}
\begin{array}{c}
2x_1 \\
-x_2 \\
10x_3
\end{array}
\end{bmatrix}
$$

In this case, M simply scales each coordinate separately.

General symmetric matrices also just scale coordinates separately... but in a different coordinate system!
The linear function defined by a matrix

- Any matrix M defines a linear function, $x \mapsto Mx$. If M is a $d \times d$ matrix, this maps \mathbb{R}^d to \mathbb{R}^d.

- This function is easy to understand when M is diagonal:

$$
\begin{pmatrix}
2 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 10 \\
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
x_3 \\
\end{pmatrix}
=
\begin{pmatrix}
2x_1 \\
-x_2 \\
10x_3 \\
\end{pmatrix}
$$

In this case, M simply scales each coordinate separately.
The linear function defined by a matrix

- Any matrix M defines a linear function, $x \mapsto Mx$. If M is a $d \times d$ matrix, this maps \mathbb{R}^d to \mathbb{R}^d.

- This function is easy to understand when M is diagonal:

$$
\begin{pmatrix}
2 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 10
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
x_3
\end{pmatrix}
=
\begin{pmatrix}
2x_1 \\
-x_2 \\
10x_3
\end{pmatrix}
$$

In this case, M simply scales each coordinate separately.

- General symmetric matrices also just scale coordinates separately... but in a different coordinate system!
Let M be a $d \times d$ matrix. We say $u \in \mathbb{R}^d$ is an eigenvector of M if

$$Mu = \lambda u$$

for some scaling constant λ. This λ is the eigenvalue associated with u.

Key point: M maps eigenvector u onto the same direction.
Question: What are the eigenvectors and eigenvalues of:

\[
M = \begin{pmatrix}
2 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 10
\end{pmatrix}
\]
Eigenvectors of a real symmetric matrix

Fact: Let M be any real symmetric $d \times d$ matrix. Then M has

- d eigenvalues $\lambda_1, \ldots, \lambda_d$
- corresponding eigenvectors $u_1, \ldots, u_d \in \mathbb{R}^d$ that are orthonormal

Can think of u_1, \ldots, u_d as the axes of the natural coordinate system for M.
Example

\[M = \begin{pmatrix} 1 & -2 \\ -2 & 1 \end{pmatrix} \] has eigenvectors \(u_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \), \(u_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ 1 \end{pmatrix} \)

1. Are these orthonormal?
2. What are the corresponding eigenvalues?
Spectral decomposition

Fact: Let M be any real symmetric $d \times d$ matrix. Then M has orthonormal eigenvectors $u_1, \ldots, u_d \in \mathbb{R}^d$ and corresponding eigenvalues $\lambda_1, \ldots, \lambda_d$.
Spectral decomposition

Fact: Let M be any real symmetric $d \times d$ matrix. Then M has orthonormal eigenvectors $u_1, \ldots, u_d \in \mathbb{R}^d$ and corresponding eigenvalues $\lambda_1, \ldots, \lambda_d$.

Spectral decomposition: Another way to write M:

$$M = \begin{pmatrix} u_1 & u_2 & \cdots & u_d \end{pmatrix} \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_d \end{pmatrix} \begin{pmatrix} u_1 & u_2 & \cdots & u_d \end{pmatrix}^T$$

- U: columns are eigenvectors
- Λ: eigenvalues on diagonal
- U^T
Spectral decomposition

Fact: Let M be any real symmetric $d \times d$ matrix. Then M has orthonormal eigenvectors $u_1, \ldots, u_d \in \mathbb{R}^d$ and corresponding eigenvalues $\lambda_1, \ldots, \lambda_d$.

Spectral decomposition: Another way to write M:

\[
M = \begin{pmatrix}
 \uparrow & \uparrow & \cdots & \uparrow \\
 u_1 & u_2 & \cdots & u_d \\
\end{pmatrix}
\begin{pmatrix}
 \lambda_1 & 0 & \cdots & 0 \\
 0 & \lambda_2 & \cdots & 0 \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & \cdots & \lambda_d \\
\end{pmatrix}
\begin{pmatrix}
 \leftarrow & \leftarrow & \cdots & \leftarrow \\
 u_1 & u_2 & \cdots & u_d \\
\end{pmatrix}
\]

U: columns are eigenvectors

Λ: eigenvalues on diagonal

Thus $Mx = U\Lambda U^T x$:

- U^T rewrites x in the $\{u_i\}$ coordinate system
- Λ is a simple coordinate scaling in that basis
- U sends the scaled vector back into the usual coordinate basis
Apply spectral decomposition to the matrix we saw earlier:

\[
M = \begin{pmatrix}
1 & -2 \\
-2 & 1
\end{pmatrix}
\]

- Eigenvectors \(u_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \ u_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ 1 \end{pmatrix} \)

- Eigenvalues \(\lambda_1 = -1, \ \lambda_2 = 3. \)
$$M = \begin{pmatrix} 1 & -2 \\ -2 & 1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 3 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$$

$$M \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
\[M = \begin{pmatrix} 1 & -2 \\ -2 & 1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 3 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \]

\[M \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \mathbf{U} \Lambda \mathbf{U}^T \begin{pmatrix} 1 \\ 2 \end{pmatrix} \]
\[M = \begin{pmatrix} 1 & -2 \\ -2 & 1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 3 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \]

\[M \begin{pmatrix} 1 \\ 2 \end{pmatrix} = U \Lambda U^T \begin{pmatrix} 1 \\ 2 \end{pmatrix} \]
\[M = \begin{pmatrix} 1 & -2 \\ -2 & 1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 3 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \]

\[M \left(\begin{pmatrix} 1 \\ 2 \end{pmatrix} \right) = U \Lambda U^T \left(\begin{pmatrix} 1 \\ 2 \end{pmatrix} \right) \]
Principal component analysis revisited

Data vectors $X \in \mathbb{R}^d$

What is the covariance of the projected data?
Principal component analysis revisited

Data vectors $X \in \mathbb{R}^d$

- $d \times d$ covariance matrix Σ is symmetric.
Principal component analysis revisited

Data vectors $X \in \mathbb{R}^d$

- $d \times d$ covariance matrix Σ is symmetric.
- Eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_d$
- Eigenvectors u_1, \ldots, u_d.

What is the covariance of the projected data?
Principal component analysis revisited

Data vectors $X \in \mathbb{R}^d$
- $d \times d$ covariance matrix Σ is symmetric.
- Eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_d$
 Eigenvectors u_1, \ldots, u_d.
- u_1, \ldots, u_d: another basis for data.
- Variance of X in direction u_i is λ_i.
Data vectors $X \in \mathbb{R}^d$

- $d \times d$ covariance matrix Σ is symmetric.
- Eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_d$
 Eigenvectors u_1, \ldots, u_d.
- u_1, \ldots, u_d: another basis for data.
- Variance of X in direction u_i is λ_i.
- Projection to k dimensions:
 $x \mapsto (x \cdot u_1, \ldots, x \cdot u_k)$.

What is the covariance of the projected data?