Probability review I:
Probability spaces, events, and conditioning

Instructor: Taylor Berg-Kirkpatrick
Slides: Sanjoy Dasgupta
Probability spaces

You roll two dice.
What is the probability they add to 10?
Probability spaces

You roll two dice.
What is the probability they add to 10?

The probability space has two components:

1. Sample space (space of outcomes).

2. Probabilities of outcomes, summing to 1.
Events

Probability space:
- Outcomes: $\Omega = \{\text{all possible pairs of dice rolls}\}$
- Every pair $z = (z_1, z_2) \in \Omega$ has probability $1/36$.
Events

Probability space:

- Outcomes: $\Omega = \{\text{all possible pairs of dice rolls}\}$
- Every pair $z = (z_1, z_2) \in \Omega$ has probability $1/36$.

Event of interest: the two dice add up to 10.
Another example

A drawer has 3 blue socks and 3 red socks. You pull out two socks at random. What is the probability they match?
Another example

A drawer has 3 blue socks and 3 red socks. You pull out two socks at random. What is the probability they match?

Outcome space $\Omega = \{(b, b), (b, r), (r, b), (r, r)\}$.

Event of interest: $A = \{(b, b), (r, r)\}$.
Once again, roll two dice.

- Outcome space $\Omega = \{1, 2, 3, 4, 5, 6\}^2$
- All outcomes equally likely: probability $1/36$
Multiple events

Once again, roll two dice.

- Outcome space $\Omega = \{1, 2, 3, 4, 5, 6\}^2$
- All outcomes equally likely: probability $1/36$

Two events of interest:

- $A =$ first roll is a four
- $B =$ the sum is ten

Event that they both occur: $A \cap B$
Conditioning

Roll two dice.

• Event A: first roll is a four
• Event B: sum is ten
Conditioning

Roll two dice.

- Event A: first roll is a four
- Event B: sum is ten

Conditional probability

$$\Pr(B|A) = \text{probability that } B \text{ occurs, given that } A \text{ occurs}$$
The conditioning formula

Roll two dice.

- Event A: first roll is a four
- Event B: sum is ten

Formula: $\Pr(A \cap B) = \Pr(A) \Pr(B|A)$
Bayes’ rule

Roll two dice.

- Event A: first roll is a four. $\Pr(A) = 1/6$.
- Event B: sum is ten. $\Pr(B) = 1/12$.
- Conditional probability $\Pr(B|A) = 1/6$.
Bayes’ rule

Roll two dice.

- Event A: first roll is a four. $\Pr(A) = \frac{1}{6}$.
- Event B: sum is ten. $\Pr(B) = \frac{1}{12}$.
- Conditional probability $\Pr(B|A) = \frac{1}{6}$.

If we find out B occurred, how does it alter the probability of A?
Bayes’ rule

Roll two dice.

- Event A: first roll is a four. $\Pr(A) = 1/6$.
- Event B: sum is ten. $\Pr(B) = 1/12$.
- Conditional probability $\Pr(B|A) = 1/6$.

If we find out B occurred, how does it alter the probability of A?

Bayes’ rule: $\Pr(A|B) = \Pr(A) \times \frac{\Pr(B|A)}{\Pr(B)}$