CSE140: Components and Design Techniques for Digital Systems

Decoders, adders, comparators, multipliers and other ALU elements

Tajana Simunic Rosing
Mux, Demux
Encoder, Decoder
Transmission Gate:
Mux/Tristate building block

- nMOS are on when gate=1
 - pass 1’s poorly from source to drain
- pMOS are on when gate=0
 - pass 0’s poorly from source to drain
- Transmission gate is a better switch
 - passes both 0 and 1 well
- When $EN = 1$, the switch is ON:
 - $EN = 0$ and A is connected to B
- When $EN = 0$, the switch is OFF:
 - A is not connected to B
Floating: Z, Tristate Buffer and Tristate Busses

- Floating, high impedance, open, high Z
 - Disconnected
- Floating nodes are used in tristate busses
 - Many different drivers, but only one is active at once

Tristate Buffer

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Tristate Bus

- Processor
- Video
- Ethernet
- Memory
2:1 Multiplexer or Mux

- Selects between one of N inputs to connect to output
- $\log_2 N$-bit select input – control input
- **Example:**

$$\begin{array}{c|c|c}
S & D_1 & D_0 \\
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 0 \\
1 & 0 & 1 \\
1 & 1 & 0 \\
1 & 1 & 1 \\
\end{array}$$

$$\begin{array}{c|c|c}
S & D_0 & D_1 \\
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 0 \\
1 & 0 & 1 \\
1 & 1 & 0 \\
1 & 1 & 1 \\
\end{array}$$

$$Y = D_0 S + D_1 S$$

Sources: TSR, Katz, Boriello & Vahid
Multiplexers

- **2:1 mux:** \(Z = A'I_0 + AI_1 \)
- **4:1 mux:** \(Z = A'B'I_0 + A'BI_1 + AB'I_2 + ABI_3 \)
- **8:1 mux:** \(Z = A'B'C'I_0 + A'B'CI_1 + A'BC'I_2 + A'BCI_3 + AB'C'I_4 + AB'Cl_5 + ABC'I_6 + ABCI_7 \)

- **In general:** \(Z = \sum_{k=0}^{2^n-1} m_{k}I_k \)
 - in minterm shorthand form for a \(2^n:1 \) Mux
Logic using Multiplexers

• Example of 2:1 mux implementation

\[Y = AB \]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Sources: TSR, Katz, Boriello & Vahid
Logic using Multiplexers

This multiplexer implements the same functionality for Y as the truth table

A. Yes
B. No

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\[Y = AB \]
Mux as general-purpose logic

- Example: \(Z(A,B,C) = AC + BC' + A'B'C \)

\[
\begin{align*}
Z(0,1,0) &= \phi + B + \phi \\
Z(0,1,1) &= \phi + \phi + B \\
Z(1,1,0) &= \phi + B + \phi
\end{align*}
\]
Function $Z(A,B,C)$ implemented by 2:1 Muxes above is:

A. $A'B'C'+ABC+BC'$
B. $(A'+AC)B+B'C'$
C. $A'B'+B'C+BC'$
D. $A'+AC+BC'$
E. None of the above
Mux example: Logical function unit

<table>
<thead>
<tr>
<th>C0</th>
<th>C1</th>
<th>C2</th>
<th>Function</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>always 1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>A + B</td>
<td>logical OR</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>(A • B)'</td>
<td>logical NAND</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>A xor B</td>
<td>logical xor</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>A xnor B</td>
<td>logical xnor</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>A • B</td>
<td>logical AND</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>(A + B)'</td>
<td>logical NOR</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>always 0</td>
</tr>
</tbody>
</table>

Sources: TSR, Katz, Boriello & Vahid
What is the output of the mux if En=1, S=102, D[3:0]=A_{16}?

A. 0
B. 1
C. Z
D. X
E. None of the above

Selects between one of N inputs to connect to the output.

$\log_2 N$-bit select input – control input

Sources: TSR, Katz, Boriello & Vahid
Demultiplexers (opposite of Mux)

\[y_i = x \text{ if } i = (S_{n-1}, \ldots, S_0) \text{ & } En = 1 \]
\[y_i = 0 \text{ otherwise} \]
• **N inputs, 2^N outputs**

• **One-hot outputs**: only one output HIGH at a time when enable signal is 1 ($EN=1$)

![Decoder Diagram](image)

<table>
<thead>
<tr>
<th>A_1</th>
<th>A_0</th>
<th>Y_3</th>
<th>Y_2</th>
<th>Y_1</th>
<th>Y_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Decoder: logic equations & implementation

- **Decoders/demultiplexers**
 - control inputs (called “selects” (S)) represent binary index of output to which the input is connected
 - data input usually called “enable” or G in equations

\[
\begin{align*}
\text{1:2 Decoder:} \\
O_0 &= G \cdot S' \\
O_1 &= G \cdot S
\end{align*}
\]

\[
\begin{align*}
\text{2:4 Decoder:} \\
O_0 &= G \cdot S_1' \cdot S_0' \\
O_1 &= G \cdot S_1' \cdot S_0 \\
O_2 &= G \cdot S_1 \cdot S_0' \\
O_3 &= G \cdot S_1 \cdot S_0
\end{align*}
\]

\[
\begin{align*}
\text{3:8 Decoder:} \\
O_0 &= G \cdot S_2' \cdot S_1' \cdot S_0' \\
O_1 &= G \cdot S_2' \cdot S_1' \cdot S_0 \\
O_2 &= G \cdot S_2' \cdot S_1 \cdot S_0' \\
O_3 &= G \cdot S_2' \cdot S_1 \cdot S_0 \\
O_4 &= G \cdot S_2 \cdot S_1' \cdot S_0' \\
O_5 &= G \cdot S_2 \cdot S_1' \cdot S_0 \\
O_6 &= G \cdot S_2 \cdot S_1 \cdot S_0' \\
O_7 &= G \cdot S_2 \cdot S_1 \cdot S_0
\end{align*}
\]
Logic Using Decoders

- OR minterms

\[Y = AB + \overline{AB} \]
\[= A \oplus B \]
Another example

- \(F(A,B,C) = \Pi M(0,2,4) + D(C) = \Sigma m(1,3,5-7) \)
Example as general-purpose logic

F1 = A'BC'D + A'B'CD + ABCD
F2 = ABC'D' + ABC
F3 = (A' + B' + C' + D') = ABCD
Decoder Applications

Decoder converts a binary address to the assertion of the addressed device

n to 2^n decoder function:

$$y_i = 1 \text{ if } E = 1 \& (I_2, I_1, I_0) = i$$
$$y_i = 0 \text{ otherwise}$$

n inputs
n= 3

2^n outputs
$2^3 = 8$
Implement a 6-2^6 decoder with 3-2^3 decoders.
At most one $I_i = 1$.

$\mathbf{(y}_{n-1}, \ldots, y_0 \mathbf{)} = i$ if $I_i = 1$ & $En = 1$
$\mathbf{(y}_{n-1}, \ldots, y_0 \mathbf{)} = 0$ otherwise.

$A = 1$ if $En = 1$ and one i s.t. $I_i = 1$
$A = 0$ otherwise.
Encoder: Logic Diagram

I₁, I₃, I₅, I₇ → y₀

I₂, I₃, I₆, I₇ → y₁

I₄, I₅, I₆, I₇ → y₂

I₀, I₁, I₆, I₇ → A

Sources: TSR, Katz, Boriello & Vahid
Decoder, Encoder, Mux, Demux

Decoder: Decode the address to assert the addressed device
Mux: Select the inputs according to the index addressed by the control signals
Adders
1-Bit & Multi-bit Adders

Half Adder

\[S = A \oplus B \]
\[C_{out} = AB \]

Full Adder

\[S = A \oplus B \oplus C_{in} \]
\[C_{out} = AB + AC_{in} + BC_{in} \]

Types of multi-bit adders
- Ripple-carry (slow)
- Carry-lookahead (faster)

Symbol
Chain 1-bit adders together

Carry ripples through entire chain

Disadvantage: slow

Ripple-carry adder delay

\[t_{\text{ripple}} = Nt_{FA} \]

where \(t_{FA} \) is the delay of a full adder
Carry-lookahead adders

- Adder with propagate (P) and generate (G) outputs:
 - Evaluate Sum and Ci+1
 - Sum = Ai \text{xor} Bi \text{xor} Ci
 - Ci+1 = Ai Bi + Ai Ci + Bi Ci
 = Ai Bi + Ci (Ai \text{xor} Bi)
 = Gi + Ci Pi

- Increasingly complex logic for carries:
 - \(C_1 = G_1 + C_0 P_i \)
 - \(C_2 = G_2 + C_1 P_2 \)
 - \(C_3 = G_3 + C_2 P_3 \)
 - \(C_4 = G_4 + C_3 P_4 \)
CSE140: Components and Design Techniques for Digital Systems

Muxes, decoders, adders, comparators, multipliers and other ALU elements

Tajana Simunic Rosing
Where we are….

• Last time:
 – Exam #1; grades posted on Wednesday

• Plan for today:
 – ALU components

• Deadlines coming up:
 – HW assigned, due Monday at the beginning of the class
 • 4 problems, 2 graded
 – Zybook due at the beginning of the class

• Reminders
 – Discussion session on Friday
Carry-Lookahead Adder

Example: 4-bit blocks ($G_{3:0}$ and $P_{3:0}$):

\[
G_{3:0} = G_3 + P_3 (G_2 + P_2 (G_1 + P_1 G_0))
\]
\[
P_{3:0} = P_3 P_2 P_1 P_0
\]

Generally:

- **Step 1:** Compute G_i and P_i for all columns
- **Step 2:** Compute G and P for k-bit blocks
- **Step 3:** C_{in} propagates through each k-bit propagate/generate block

\[
G_{i;j} = G_i + P_i (G_{i-1} + P_{i-1} (G_{i-2} + P_{i-2} G_j))
\]
\[
P_{i;j} = P_i P_{i-1} P_{i-2} P_j
\]
\[
C_i = G_{i;j} + P_{i;j} C_{i-1}
\]
Adders: CLA vs. Ripple

You are designing a 64-bit adder. To get the best performance, would you design:

A. A 64-bit ripple-carry adder
B. A 64-bit carry-lookahead adder
C. 8-bit sections of carry-lookahead with ripple carry connecting them
D. 32-bit sections of ripple-carry connected with carry-lookahead
Subtractors
2s complement

- If N is a positive number, then the negative of N (its 2s complement or N*) is bit-wise complement plus 1
 - 7* is -7: 0111 -> 1000 + 1 = 1001 (-7)
 - -7* is 7: 1001 -> 0110 + 1 = 0111 (7)
Subtraction

If you are using 4 bit number, what is the result of the following equation in 2s complement: $y = 4 - 7$

A. 1011
B. 0011
C. 1101
D. 1100
E. None of the above
Detecting Overflow: Method 1

- Assuming 4-bit two’s complement numbers, one can detect overflow by detecting when the two numbers’ sign bits are the same but are different from the result’s sign bit
 - If the two numbers’ sign bits are different, overflow is impossible
 - Adding a positive and negative can’t exceed the largest magnitude positive or negative
- Simple circuit
 - overflow = a3’b3’s3 + a3b3s3’

<table>
<thead>
<tr>
<th>sign bits</th>
<th>+</th>
<th>sum</th>
<th>overflow</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 1 1</td>
<td>0</td>
<td>1 0 0 0</td>
<td>(a)</td>
</tr>
<tr>
<td>1 1 1 1</td>
<td>1</td>
<td>0 1 1 1</td>
<td>(b)</td>
</tr>
<tr>
<td>1 0 0 0</td>
<td>0</td>
<td>1 1 1 1</td>
<td>(c)</td>
</tr>
</tbody>
</table>

If the numbers’ sign bits have the same value, which differs from the result’s sign bit, overflow has occurred.
Detecting Overflow: Method 2

- Detect a difference between carry-in to sign bit and carry-out from it
- Yields a simpler circuit: \(\text{overflow} = c_3 \text{ xor } c_4 = c_3 c_4' + c_3' c_4 \)

If the carry into the sign bit column differs from the carry out of that column, overflow has occurred.
Subtractor

Symbol

Implementation

Sources: TSR, Katz, Boriello & Vahid
In this schematic addition occurs when \textit{Sel} signal is:

A. True
B. False
More ALU Components
Comparator: Equality

Symbol

Implementation

Equal

= A B

Equal

44
Comparator: Less Than

A \text{ < } B

Sources: TSR, Katz, Boriello & Vahid
Shifters

- **Logical shifter**: shifts value to left or right and fills empty spaces with 0’s
 - Ex: 11001 >> 2 = 00110
 - Ex: 11001 << 2 = 00100

- **Arithmetic shifter**: same as logical shifter, but on right shift, fills empty spaces with the old most significant bit
 - Ex: 11001 >>> 2 = 11100
 - Ex: 11001 <<< 2 = 00100

- **Rotator**: rotates bits in a circle, such that bits shifted off one end are shifted into the other end
 - Ex: 11001 ROR 2 = 01110
 - Ex: 11001 ROL 2 = 00111
General Shifter Design

\[A_{3:0} \rightarrow \text{shamt}_{1:0} \rightarrow Y_{3:0} \]
Multiplication of positive binary numbers

- Generalized representation of multiplication by hand

\[
\begin{array}{cccc}
 a_3 & a_2 & a_1 & a_0 \\
 x & b_3 & b_2 & b_1 & b_0 \\
\end{array}
\]

\[
\begin{array}{cccccc}
 b_{0a3} & b_{0a2} & b_{0a1} & b_{0a0} & \text{(pp1)} \\
 b_{1a3} & b_{1a2} & b_{1a1} & b_{1a0} & 0 & \text{(pp2)} \\
 b_{2a3} & b_{2a2} & b_{2a1} & b_{2a0} & 0 & 0 & \text{(pp3)} \\
 + & b_{3a3} & b_{3a2} & b_{3a1} & b_{3a0} & 0 & 0 & 0 & \text{(pp4)} \\
\end{array}
\]

\[
\begin{array}{cccccccc}
 p_7 & p_6 & p_5 & p_4 & p_3 & p_2 & p_1 & p_0 \\
\end{array}
\]

For demo see: http://courses.cs.vt.edu/~cs1104/BuildingBlocks/multiply.010.html
Multiplier – Array Style

- Multiplier design – array of AND gates

![Diagram of multiplier array with AND gates and block symbol](image)
Division of positive binary numbers

• Repeated subtraction
 – Set quotient to 0
 – Repeat while dividend >= divisor
 • Subtract divisor from dividend
 • Add 1 to quotient
 – When dividend < divisor:
 • Reminder = dividend
 • Quotient is correct

Example:
• Dividend: 101; Divisor: 10

<table>
<thead>
<tr>
<th>Dividend</th>
<th>Quotient</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
</tr>
</tbody>
</table>

For demo see: http://courses.cs.vt.edu/~cs1104/BuildingBlocks/Binary.Divide.html
ALU: Arithmetic Logic Unit
Designing an Arithmetic Logic Unit

- **ALU Control Lines (ALUop)**
- 000: And
- 001: Or
- 010: Add
- 110: Subtract
- 111: Set-on-less-than

Diagram:
- ALUop (3)
- A (N)
- B (N)
- ALU
- Result (N)
- Zero
- Overflow
- CarryOut

Sources: TSR, Katz, Boriello & Vahid
A One Bit ALU

- This 1-bit ALU performs AND, OR, and ADD

```
+ 1 1 1 0 0 0 0 - 4
```

```
  1 1 1 1 0 0 0 - 2
```

```
  1 0 1 1 0 0 - 6
```

Sources: TSR, Katz, Boriello & Vahid
A 32-bit ALU

1-bit ALU

32-bit ALU

Sources: TSR, Katz, Boriello & Vahid
Subtract – We’d like to implement a means of doing A-B (subtract) but with only minor changes to our hardware. How?

1. Provide an option to use bitwise NOT A
2. Provide an option to use bitwise NOT B
3. Provide an option to use bitwise A XOR B
4. Provide an option to use 0 instead of the first CarryIn
5. Provide an option to use 1 instead of the first CarryIn

<table>
<thead>
<tr>
<th>Selection</th>
<th>Choices</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1 alone</td>
</tr>
<tr>
<td>B</td>
<td>Both 1 and 2</td>
</tr>
<tr>
<td>C</td>
<td>Both 3 and 4</td>
</tr>
<tr>
<td>D</td>
<td>Both 2 and 5</td>
</tr>
<tr>
<td>E</td>
<td>None of the above</td>
</tr>
</tbody>
</table>
Full 32-bit ALU

what signals accomplish ADD?

<table>
<thead>
<tr>
<th>Binvert</th>
<th>CIn</th>
<th>Oper</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>E</td>
<td>NONE OF THE ABOVE</td>
<td></td>
</tr>
</tbody>
</table>

sign bit (adder output from bit 31)
Full 32-bit ALU

what signals accomplish OR?

<table>
<thead>
<tr>
<th>Binvert</th>
<th>CIn</th>
<th>Oper</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>E</td>
<td>NONE OF THE ABOVE</td>
<td></td>
</tr>
</tbody>
</table>

sign bit (adder output from bit 31)
Full 32-bit ALU

```plaintext
<table>
<thead>
<tr>
<th>Binvert</th>
<th>CIn</th>
<th>Oper</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>E</td>
<td>NONE OF THE ABOVE</td>
<td></td>
</tr>
</tbody>
</table>
```

Little more intense – can you get this?

sign bit (adder output from bit 31)
Arithmetic Logic Unit – Example 2

<table>
<thead>
<tr>
<th>$F_{2:0}$</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>A & B</td>
</tr>
<tr>
<td>001</td>
<td>A</td>
</tr>
<tr>
<td>010</td>
<td>A + B</td>
</tr>
<tr>
<td>011</td>
<td>Not used</td>
</tr>
<tr>
<td>100</td>
<td>A & (\sim B)</td>
</tr>
<tr>
<td>101</td>
<td>A</td>
</tr>
<tr>
<td>110</td>
<td>A - B</td>
</tr>
<tr>
<td>111</td>
<td>Not used</td>
</tr>
</tbody>
</table>
ALU Design Example 3

<table>
<thead>
<tr>
<th>S2</th>
<th>S1</th>
<th>S0</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>B-A</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>A-B</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>A+B</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>A xor B</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>A or B</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>A and B</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>