CSE140: Sample RTL Problems

Tajana Simunic Rosing
We are getting close to the end!!!

- Last time:
 - Completed combinational and sequential design, HLSMs, memory, CPU
- Plan for today:
 - Midterm #3 sample problems
- Deadlines coming up:
 - HW#7 due today; **bonus HW grade**
- Reminders
 - **Exam #3 Friday, March 15th**
 - 8 ½ x 11” sheet of paper with handwritten notes; ID, pencil and eraser
 - 4 problems, focus on recent material, but exam is cumulative
 - Please check all your grades on TED, let us know if there are any issues
 - Bonus final exam worth 1% of course grade
 - Released on Monday of final’s week
 - Due on Friday of final’s week, turn it into gradescope
- **Office hours this week MW 1-2pm**, no office hrs on Friday
- **Please fill out CAPEs at** http://cape.ucsd.edu, I take your feedback very seriously and use it to improve the course. Please provide written comments as well.
 - If 95% of the class fill out CAPEs ->
 I will drop the lowest HW and Zybook grades!
Simple data encryption/decryption device

- $B = 1$, set offset $O = I[0:31]$
- $B=0$ $e=1$: encrypt mode: output $J = I + O$
- $B=0$ $e=0$: decrypt mode: get $I = J - O$
RTL Examples: Reaction Timer

On reset (rst) reaction timer waits for 10 sec before turning on light ($len=1$). It measures the length of time $rtime$ (ms) until a user presses the button B

- If reaction slower than 2sec, output $slow=1$ and $rtime=2000$
Fast sum of 16 32-bit registers
Hot Water Detector

Create an alarm system that sets alarm=1 when the average temperature of four consecutive samples CT meets or exceeds a threshold WT. Signal clr=1 disables the alarm.
Hot Water Detector cont.
Inputs: byte a, byte b, bit go
Outputs: byte gcd, bit done

GCD:
while(1) {
 while(!go);
 done = 0;
 while (a != b) {
 if(a > b) {
 a = a - b;
 }
 else {
 b = b - a;
 }
 }
 gcd = a;
 done = 1;
}
GCD example
Finish HLSM Design

- Design an 8-bit counter using RTL:
 - When input $E = 1$, it counts even numbers (0, 2, 4, 6, ..) and when $E = 0$, it counts odd numbers (1, 3, 5, 7, ..).
 - When input $CLR = 1$ and $E=1$, then it clears the output to 0; if $CLR=1$ and $E=0$, it sets output to “00000001”.
 - If you were initially counting even(odd) numbers, and E flips, then the output changes to the nearest greater odd (even) value.
Fibonacci Lookup Table

- Design a lookup table 256 x 256 bit that stores Fibonacci #s:
 - \(F_n = 0 \) if \(n = 0 \), \(1 \) if \(n = 1 \), \(F_{n-1} + F_{n-2} \) otherwise (\(n < 256 \))