Data Management

An evolving, expanding field:

- Classical stand-alone databases (Oracle, DB2, SQL Server)
- Computer science is becoming data-centric:
 web knowledge harvesting, crowdsourcing, cloud computing, scientific databases, networks, data mining, streaming sensor monitoring, social networks, bioinformatics, geographic information systems, digital libraries, data-driven business processes, data analytics

- Classical database concepts and algorithms continue to provide the core technology → this course
CSE132A: Database Systems Principles

- Core concepts and techniques in database systems
- Databases from the viewpoint of user and designer
- A lot of SQL, but also peeks under the hood: query processing, schema design, transactions and concurrency control
- Some basic theory: formal languages underlying SQL relational algebra and relational calculus
- Basic background for follow-up courses

132B: Database system applications (A. Deutsch)
135: Online analytics applications (Y. Papakonstantinou)
190: Beyond relational databases (A. Deutsch)
190: Database implementation (A. Kumar)

Resources

- Slides, recommended texts, podcast
- Practice problem sets with solutions (ungraded)
 Gradiance online practice homeworks and labs
 Posted practice problems
- Weekly discussion section
- TA/tutor daily office hours and instructor office hours
- Discussion board (Piazza)
- Everything will be posted on the class website (check often!)
 http://cseweb.ucsd.edu/classes/wi19/cse132A-a/
Requirements

- Two Gradiance SQL Labs and two written homeworks (16%)
- Two programming assignments (SQL and JDBC) (33%)
- Midterm (25%)
- Final (25%)
- Class participation via clickers (1%)

Academic Integrity

Everyone taking the class is assumed familiar with the Integrity of Scholarship policy posted on the class Web site

What is a database?

- Persistent data
- Query and update language for accessing and modifying data
- Query optimization
- Transactions and concurrency control

What kind of data?

Emphasis: many instances of similarly structured data

Examples:

- Airline reservations: database (large set of similar records)
- Computerized library: information retrieval
- Medication advisor: expert system
Top Level Goals of a Database System

• Provide users with a meaning-based view of data
 – shield from irrelevant detail → abstract view

• Support operations on data
 – queries, updates

• Provide data control
 – integrity, security
 – concurrency, recovery

Levels of Abstraction

• **Logical level**: describes data stored in database in terms close to the application

  ```
  type customer = record
  customer_id : string;
  customer_name : string;
  customer_street : string;
  customer_city : integer;
  end;
  ```

• **Physical level**: describes how the data is stored.

• **View level**: customized, restructured information. Views can also hide information (such as an employee’s salary) for security purposes.
Basic Architecture of a Database System

Data Independence – logical and physical levels are independent

Database System

• Tailored to specific application

Database Management System

• Generalized DB system
 – used in variety of application environments
 – common approach to
 • data organization
 • data storage
 • data access
 • data control
 – e.g. Ingres/Postgres, DB2, Oracle, SQL Server, MySQL, etc.
Data Models

- A collection of concepts and tools for describing the data relationships, semantics, constraints...
- A language for querying and modifying the data

- Relational model
- Entity-Relationship data model (mainly for database design, no query language)
- Object-based data models (Object-oriented and Object-relational)
- Semi-structured data model (XML)
- Other older models:
 - Network model
 - Hierarchical model

Schemas and Instances

Similar to types and values of variables in programming languages

- Schema – the logical structure of the database
 - Example: The database consists of information about a set of customers and accounts and the relationship between them
 - Analogous to type of a variable in a program

- Instance – the actual content of the database at a particular point in time
 - Analogous to the value of a variable
Example: Entity-Relationship Model

• Models an application as a collection of entities and relationships
 – Entity: a “thing” or “object” in the enterprise that is distinguishable from other objects
 • Described by a set of attributes
 – Relationship: an association among several entities
• Represented diagrammatically by an entity-relationship diagram:

Example: Relational Model

(a) The customer table

(b) The account table

(c) The deposit table

Schema
Example: Relational Model

<table>
<thead>
<tr>
<th>customer_id</th>
<th>customer_name</th>
<th>customer_street</th>
<th>customer_city</th>
</tr>
</thead>
<tbody>
<tr>
<td>123-45-6789</td>
<td>Johnson</td>
<td>123 Main St.</td>
<td>Pittsburgh</td>
</tr>
<tr>
<td>012-34-5678</td>
<td>Smith</td>
<td>789 West Ave.</td>
<td>Portland</td>
</tr>
</tbody>
</table>

Instance

Data Definition Language (DDL)

- Specification language for defining the database schema

 Example in SQL:
  ```sql
  create table account (  
    account-number    char(10),  
    balance           integer  
  )
  ```

- DDL compiler generates a set of tables described in a data dictionary
- Data dictionary contains metadata (i.e., data about data)
 - Database schema
 - Integrity constraints
 - Authorization information
Data Manipulation Language (DML)

• Language for accessing and modifying data
 DML also known as query/update language
• Two classes of languages
 – Procedural – user specifies what data is required and how to get that data
 – Declarative (nonprocedural) – user specifies what data is required
 without specifying how to get it
• SQL is the most widely used query language
 primarily declarative

This course: core database issues

• The relational model
• Commercial query languages: SQL (and some QBE)
• Formal query languages: relational algebra and calculus
• Query processing
• Schema design: normal forms and the ER model
• Concurrency control
• Other topics as time allows
Databases at UCSD

• Prof. Alin Deutsch
• Prof. Arun Kumar
• Prof. Yannis Papakonstantinou
• Prof. Victor Vianu

Database group Web site: http://db.ucsd.edu/
papers, seminars, bragging….

• Intersections with other CSE groups
 – storage
 – multimedia
 – machine learning
 – networks