CSE 132A
A few practice problems on concurrency control

1. Consider the following schedule:

\[w_3(E) r_1(D) w_2(C) w_3(A) r_1(E) w_1(B) r_1(B) w_2(E) r_4(A) w_4(C) \]

(i) Draw the precedence graph for this schedule. (ii) Is the schedule conflict serializable? If yes, give an equivalent serial schedule.

Solution The precedence graph has the following edges:

\[< T1, T2 >, < T3, T1 >, < T3, T2 >, < T2, T4 >, < T3, T4 >. \]

The graph is acyclic so the schedule is conflict serializable. An equivalent serial schedule is \(T_3; T_1; T_2; T_4 \).

2. Give an example of two transactions \(T_1 \) and \(T_2 \) that lock the same data entities, such that \(T_1 \) satisfies two-phase locking, \(T_2 \) violates two-phase locking, and there is a schedule for \(T_1 \) and \(T_2 \) that is not conflict serializable.

Solution An example is the following:

\[T_1 = l(A); w(A); l(B); w(B); u(A); u(B) \]
\[T_2 : l(A); w(A); u(A); l(B); w(B); u(B) \]
A schedule for \(T_1 \) and \(T_2 \) that is not conflict serializable is:

\[T_2 : l(A) \]
\[T_2 : w(A) \]
\[T_2 : u(A) \]
\[T_1 : l(A) \]
\[T_1 : w(A) \]
\[T_1 : l(B) \]
\[T_1 : w(B) \]
\[T_1 : u(B) \]
\[T_2 : l(B) \]
\[T_2 : w(B) \]
\[T_2 : u(B) \]
The precedence graph for this schedule is \(< T2, T1 >, < T1, T2 >\), which is cyclic.

3. Consider a concurrency control protocol requiring that every transaction request data entities in a fixed linear order (i.e., the data entities are \(A_1...A_n\) and no transaction can request \(A_i\) after \(A_j\) if \(i < j\)).

(i) Does the above protocol ensure serializability of all resulting schedules?

(ii) Does the protocol prevent deadlocks? (Hint: consider a "waits-for" graph whose nodes are the transactions, and at a given time there is an edge from transaction \(t\) to transaction \(t'\) iff at that time \(t\) is waiting for a data entity held by \(t'\). A deadlock occurs iff at some time the "waits-for" graph has a cycle.)

Solution

(i) The protocol does not ensure serializability. For example, take the transactions \(T1, T2\) in problem 2, where \(A\) is replaced by \(A1\) and \(B\) by \(A2\). Both transactions satisfy the protocol but the schedule shown in problem 2 is not serializable.

(ii) The protocol does prevent deadlock. Consider a "waits-for" graph for \(n\) transactions \(T_1, ..., T_n\). The nodes are \(T_1, ..., T_n\) and there is an edge from \(T\) to \(T'\) if \(T\) waits for \(T'\), i.e. \(T'\) holds the lock on some data entity and \(T\) has requested the lock on the same and is waiting for \(T'\) to release it. Deadlock occurs if there is a cycle in this graph. To see that this cannot happen, suppose there is a cycle

\[
T_1 \rightarrow ... \rightarrow T_n \rightarrow T_1
\]

For \(j < n\), let \(A_{i_j}\) be the data entity such that \(T_{j+1}\) holds the lock on \(A_{i_j}\) and \(T_j\) is waiting for the lock on the same. For \(j = n\) let \(A_{i_n}\) be the entity on which \(T_1\) holds the lock and for which \(T_n\) is waiting. Notice that for \(j < n\), \(T_{j+1}\) holds the lock on \(A_{i_j}\) and is waiting for the lock on \(A_{i_{j+1}}\) so by the protocol, \(i_j < i_{j+1}\). Similarly, \(T_1\) holds the lock on \(A_{i_n}\) and is waiting for the lock on \(A_{i_1}\), so \(i_n < i_1\). In summary we have \(i_1 < i_2 < ... < i_n < i_1\) which is a contradiction. This shows that there cannot be a cycle in the "waits-for" graph so the protocol prevents deadlock.