Lecture 6 Overview

- Project discussion
- Onix discussion
- Datacenter introduction
What is a Network OS?

- ONIX provides abstractions for network management

- Basic functionalities:
 - State distribution primitives between controllers and network elements.
 - Virtualized network elements

- A global view & control of the network
 - Very different from Active Networking vision (node local)
Onix Architecture

Server 1

- Network Control Logic
- NIB
- Switch Import / Export
- Distribution I / E

Server N

- Network Control Logic
- NIB
- Distribution I / E
- Switch Import / Export

Management Connectivity Network Infrastructure

Managed Physical Network Infrastructure
Design Requirements

- **Generality**: Support a wide range of network management applications
- **Scalability**: No inherent limitations due to the platform
- **Reliability**: Graceful failure handling
- **Performance**: Sufficient performance
Onix API

- Developers program against a network graph
- Nodes represent physical network entities
Network Information Base

- The NIB is the focal point of the system
 - State for applications to access
 - External state changes imported into it
 - Local state changes exported from it
Scalability

- Physical controller becomes a bottleneck:
 - Memory: to keep NIB
 - CPU and bandwidth: to process events

- This is a classic distributed systems problem
 - Partitioning
 - Aggregation
Partitioning For Scale

- Multiple dimensions available to applications:
 - Onix instances with different computations tasks
 - Onix instances have only subsets of the NIB
 - Switches connect to a subset of Onix instances
Aggregating for Scale

- Reduce fidelity of information before disseminating within the cluster
Aggregating for Scale

- Reduce fidelity of information before disseminating within the cluster
Consistency

- Onix provides two storage options
 - Replicated transactions (SQL) storage
 - One-hop memory-based DHT

- Do we need strong consistency for forwarding state between the controller and routers?

- Do we need strong consistency for NIB stored in controllers?

- Is it reasonable to ask applications for consistency preference and resolving conflicts?
Reliability

- **Network Element & Link Failures**: Applications' responsibility

- **Connectivity Infrastructure Failures**: Assumed reliable

- **Onix Failures**: Onix provides distributed coordination facilities provided for app failover
Discussion

- What are the security implications of Onix?

- Is Onix flexible and general enough for networking management?

- Are there applications you can run on a centralized network but not on a distributed one?
Cloud Computing

- Elastic resources
 - Expand and contract resources
 - Pay-per-use
 - Infrastructure on demand

- Multi-tenancy
 - Multiple independent users
 - Security and resource isolation
 - Amortize the cost of the (shared) infrastructure

- Flexible service management
 - Resiliency: isolate failure of servers and storage
 - Workload movement: move work to other locations
Cloud Service Models

- **Software as a Service (Saas)**
 - Provider licenses applications to users as a service
 - e.g., customer relationship management, email, …
 - Avoid costs of installation, maintenance, patches, …

- **Platform as a Service (Paas)**
 - Provider offers software platform for building applications
 - e.g., Google’s App-Engine
 - Avoid worrying about scalability of platform

- **Infrastructure as a Service (Iaas)**
 - Provider offers raw computing, storage, and network
 - e.g., Amazon’s Elastic Computing Cloud (EC2)
 - Avoid buying servers and estimating resource needs
Multi-Tier Applications

- Applications consist of tasks
 - Many separate components
 - Running on different machines
- Commodity computers
 - Many general-purpose computers
 - Not one big mainframe
 - Easier scaling

Front end Server

Aggregator

Aggregator

Aggregator

Worker

Worker

Worker

Worker

Worker

Worker

CSE 222A – Lecture 6: Software Defined Networks
Host Virtualization

- Multiple virtual machines on one physical machine
- Applications run unmodified as on real machine
- VM can migrate from one computer to another
VMM Virtual Switches
Top-of-Rack Architecture

- Rack of servers
 - Commodity servers
 - And top-of-rack switch

- Modular design
 - Preconfigured racks
 - Power, network, and storage cabling

- Aggregate to the next level
Extreme Modularity

- Containers

- Many containers
Data Center Challenges

- Traffic load balance
- Support for VM migration
- Achieving bisection bandwidth
- Power savings / Cooling
- Network management (provisioning)
- Security (dealing with multiple tenants)
Data Center Costs

- James Hamilton published basic 2008 breakdown

- Servers: 45%
 - CPU, memory, disk

- Infrastructure: 25%
 - UPS, cooling, power distribution

- Power draw: 15%
 - Electrical utility costs

- Network: 15%
 - Switches, links, transit
For Next Class...

- Read and review Vahdat’s Fat Tree paper
- Submit project groups by tonight
 - Email me list of members & initial idea(s)
 - Make sure to CC all project members