CSE200: Computability and complexity
Circuit lower bounds

Shachar Lovett
May 9, 2013

1 Small depth classes

The class NC (Nick’s class) corresponds to circuits with small depth and fan-in two.

Definition 1.1 (NC). The class NC^i is the class of circuits with AND/OR/NOT gates of fan-in 2 and depth $O(\log(n)^i)$. We define $NC = \cup_{i \geq 1} NC^i$.

Definition 1.2 (AC). The class AC^i is the class of circuits with AND/OR/NOT gates of unbounded fan-in gates and depth $O(\log(n)^i)$.

Clearly $NC^i \subset AC^i \subset NC^{i+1}$. These classes correspond to fast parallel algorithms. We suspect that $NC \neq P$ but can’t even separate NC from PH.

The class NC^0 corresponds to functions which depend just on a constant number of input bits. The class AC^0 is more interesting and can compute nontrivial functions, e.g. approximate majority. We don’t know how to show $NC^1 \neq P$. However, we can prove lower bounds for NC^0, AC^0.

Theorem 1.3. The PARITY function cannot be computed in NC^0.

Proof. An NC^0 circuit can only read $O(1)$ inputs.

Theorem 1.4 (Hastad). The PARITY function cannot be computed in AC^0 (not even approximately).

We first prove a baby version of this.

Theorem 1.5. A depth 2 circuit computing PARITY must have size $\Omega(2^n)$.

Proof. A depth 2 circuit is essentially a DNF or CNF. Let $\varphi = D_1 \lor D_2 \ldots \lor D_m$ be a DNF computing the PARITY function. Let us first argue that all the terms must have n variables. Assume some term D has less than n variables, and let x_j be a variable not participating in D. We can find an assignment to the variables $\{x_i : i \neq j\}$ which make D true. Let us now set the variables outside D so that the parity will be 1 (false). Then we get that $D(x) \neq PARITY(x)$ on this input. Contradiction. So, we got that all terms have exactly n variables, hence they compute 1 on a single input and 0 on the rest. PARITY has $2^n - 1$ inputs where it evaluates to 1, hence if $\phi = PARITY$ it must have at least $2^n - 1$ terms.
2 Polynomials

We will view boolean functions as \(f : \{0, 1\}^n \to \{0, 1\} \). A polynomial is an expression of the form
\[
p(x_1, \ldots, x_n) = \sum_{S \subseteq [n]} p_S \prod_{i \in S} x_i.
\]

Claim 2.1. Any boolean function can be computed by a unique polynomial.

Proof. Let \(FUNC = \{ f : \{0, 1\}^n \to \mathbb{R} \} \) denote the vector space over \(\mathbb{R} \) of functions, of dimension \(\dim(FUNC) = 2^n \). Clearly every polynomial defines a function, and they are close under addition, hence the functions given by polynomials also form a vector space.

Let \(POLY \) denote the vector space of functions given by polynomials. We need to show \(POLY = FUNC \). We will do so by showing that \(\dim(POLY) = 2^n \). To do that, we need to show that if \(p_1, p_2 \) are polynomials with different monomials then they define different functions (when evaluated on \(\{0, 1\}^n \)). Setting \(p = p_1 - p_2 \) we need to show that if \(p \) is a nonzero polynomial then there exists \(x \in \{0, 1\}^n \) for which \(p(x) \neq 0 \). Let \(S \) be minimal such that \(p_S \neq 0 \) and let \(x \in \{0, 1\}^n \) be such that \(x_i = 1 \) iff \(i \in S \). Then
\[
p(x) = \sum_{S \subseteq [n]} p_S \prod_{i \in S} x_i = p_S
\]

\(\square \)

Let \(POLY_k \) denote the family of all polynomials of degree at most \(k \);
\[
POLY_k = \{ p(x) = \sum_{|S| \leq k} p_S \prod_{i \in S} x_i \}.
\]

Sometimes it will be convenient to represent bits as \(\{-1, 1\} \). Note that we can always do this change by replacing \(x_i \in \{0, 1\} \) with \(1 - 2x_i \in \{-1, 1\} \). Note also this doesn’t change the degree of a polynomial.

3 \(AC^0 \) circuits can be approximated by low-degree polynomials

Theorem 3.1. Let \(C \) be an \(AC^0 \) circuit with \(n \) inputs, depth \(d \) and \(s \geq n \) gates. Then for any \(\varepsilon > 0 \) there exists a polynomial \(p(x_1, \ldots, x_n) \) of degree \(O(\log^{2d}(s)) \) such that
\[
|\{ x \in \{0, 1\}^n : p(x) = C(x) \}| \geq 0.99 \cdot 2^n.
\]

We first prove the following lemma handling a single \(AND \) gate: \(AND(x_1, \ldots, x_n) = 1 \) if \(x_1 = \ldots = x_n = 1 \), and otherwise \(AND(x_1, \ldots, x_n) = 0 \).
Lemma 3.2. Let \(n \in \mathbb{N}, \varepsilon > 0 \). There exists a distribution \(D \) over polynomials \(p(x_1, \ldots, x_n) \) of degree \(k = O(\log(n) \log(1/\varepsilon)) \) such that for any \(x \in \{0, 1\}^n \),

\[
\Pr_{p \sim D} [p(x) = \text{AND}(x)] \geq 1 - \varepsilon.
\]

Proof. Let \(1 \leq t \leq \log(n) \) be chosen uniformly. Let \(A \subseteq [n] \) be a random set of size \(2^t \).
Define the polynomial

\[
p_A(x_1, \ldots, x_n) = \sum_{i \in A} x_i - |A| + 1.
\]

Clearly if \(x_1 = \ldots = x_n = 1 \) then \(p_A(x) = 1 \) always. We will show that if \(x \in \{0, 1\}^n \setminus 1^n \)
then

\[
\Pr_A[p_A(x) = 0] \geq \Omega(1/\log n).
\]

So, if we choose \(A_1, \ldots, A_k \) randomly with \(k = O((\log n) \log(1/\varepsilon)) \) and define \(p(x) = p_{a_1}(x) \ldots p_{a_k}(x) \) then

1. \(p(1^n) = 1 \) with probability one.
2. If \(x \in \{0, 1\}^n \setminus 1^n \) then \(\Pr[p_A(x) = 0] \geq 1 - \varepsilon \) since

\[
\Pr[p_A(x) \neq 0] = \prod_{i=1}^k \Pr[p_{A_i}(x) \neq 0] = (1 - O(1/\log n))^\log n \log(1/\varepsilon) \leq \varepsilon.
\]

To conclude, we need to show that \(\Pr_A[p_A(x) = 0] \geq \Omega(1/\log n) \). Fix \(x \in \{0, 1\}^n \setminus 1^n \).
Assume the number of zeros in \(x \) is between \(2^a \) and \(2^{a+1} \) for some \(0 \leq a \leq \log(n) \). Let us condition on the case that \(t = \log(n) - a \). In such a case, \(|A| = n/2^a \) and the average number of zeros in \(A \) is \(O(1) \). We can show (but won’t here) that with constant probability, there is exactly one zero in \(A \). In such a case however \(p_A(x) = 0 \).

A similar lemma holds for OR gates. NOT gates clearly can be computed by the polynomial \(p(x) = 1 - x \).

Proof of Theorem. Fix an input \(x \). Let \(v_1, \ldots, v_s \) denote the values of the node \(C \) when evaluated on input \(x \). Assume we order the nodes so that \(v_1(x) = x_1, \ldots, v_n(x) = x_n \) and

\[
v_i(x) = g(v_1(x), \ldots, v_{i-1}(x))
\]

where \(g \in \{ \text{AND}, \text{OR}, \text{NOT} \} \). By the lemma with error \(\varepsilon = 1/100s \) there exists a distribution \(D_i \) over polynomials \(p_i \) of degree \(O(\log^2(s)) \) for each node such that

\[
\Pr_{p_i \sim D_i} [v_i(x) \neq p_i(v_1(x), \ldots, v_{i-1}(x))] \geq 1/100s.
\]

By the union bound,

\[
\Pr_{p_1 \sim D_1, \ldots, p_s \sim D_s} [\forall i \in [s], v_i(x) = p_i(v_1(x), \ldots, v_{i-1}(x))] \geq 0.99.
\]

3
Hence, we can apply the polynomials recursively. Nodes at the bottom (inputs) have polynomials of degree 1; nodes one level up have polynomials of degree \(\log^2(s) \); nodes one level up have polynomials of degree \(\log^4(s) \); and so on. Hence, we get that there is a distribution over polynomials \(p(x) \) of degree \(O(\log^d(s/\varepsilon)) \) so that, for any input \(x \in \{0, 1\}^n \),

\[
\Pr_{p \sim D}[C(x) = p(x)] \geq 0.99.
\]

Let now \(x \in \{0, 1\}^n \) be uniformly chosen. Then also

\[
\Pr_{p \sim D, x \in \{0, 1\}^n}[C(x) = p(x)] \geq 0.99.
\]

But this means there must be a value for \(p \in \text{POLY}_k \) for \(k = O(\log^d(s)) \) such that

\[
\Pr_{x \in \{0, 1\}^n}[C(x) = p(x)] \geq 0.99.
\]

\[\square\]

4 PARITY cannot be approximated by low-degree polynomials

Theorem 4.1. Let \(p(x_1, \ldots, x_n) \) be a polynomial of degree \(k \). Then

\[
|\{x \in \{0, 1\}^n : p(x) = \text{PARITY}(x)\}| \leq (1/2 + O(k/\sqrt{n}))2^n.
\]

Corollary 4.2. If an \(\text{AC}^0 \) circuit with \(n \) inputs, depth \(d \) and size \(s \) computes the PARITY function then \(s \geq \exp(n^{1/4d}) \).

Proof. There exists a polynomial \(p(x) \) of degree \(k = O(\log^2(s)) \) so that \(|\{x \in \{0, 1\}^n : C(x) = p(x)\}| \geq 0.99 \cdot 2^n \). However, this requires \(k \geq \Omega(\sqrt{n}) \), hence \(s \geq \exp(n^{1/4d}) \).

Proof of Theorem. It will be convenient to view \(p \) as a polynomial over \(\{-1, 1\}^n \). Note that \(\text{PARITY}(x_1, \ldots, x_n) = \prod_{i=1}^n x_i \). Let

\[
A = \{x \in \{-1, 1\}^n : p(x) = \text{PARITY}(x)\}.
\]

Let \(V = \{f : A \to \mathbb{R}\} \) denote the vector space of functions from \(A \) to \(\mathbb{R} \). Its dimension is \(A \). We will show \(|A| \) is small by finding a basis for this space. We already know that any function \(f : \{-1, 1\}^n \to \mathbb{R} \) can be written as a polynomial

\[
f(x) = \sum_{S \subseteq [n]} f_S \prod_{i \in S} x_i.
\]
The crucial observation is that if $x \in A$ we can replace $\prod_{i=1}^{n} x_i$ with the low degree polynomial $p(x)$. Moreover, if $|S| \geq (n + k)/2$ then for any $i \in S$,

$$\prod_{i \in S} x_i = \prod_{i \in S} x_i \cdot \prod_{i=1}^{n} x_i \cdot p(x) = \prod_{i \in [n] \setminus S} x_i \cdot i \cdot p(x),$$

which is a polynomial of degree $n - |S| + k \leq (n + k)/2$. Hence, all functions $f : A \to \mathbb{R}$ can be written as polynomials of degree at most $(n + k)/2$. The dimension of this vector space is the number of monomials of that degree,

$$|A| = \dim(V) = \sum_{i=0}^{(n+k)/2} \binom{n}{i} = (1/2 + O(k/\sqrt{n})) \cdot 2^n.$$

\[\square\]

5 Natural proofs

Natural proofs give a barrier to proof techniques which identify a property of the circuit class which they then demonstrate the hard functions doesn’t have.

Definition 5.1. A "natural property" against a circuit class C is a subset \mathcal{P} of the functions $f : \{0, 1\}^{*} \to \{0, 1\}$ such that

- If $f_1, \ldots, f_n, \ldots \in C$ then $f_n \not\in \mathcal{P}$ for large enough n.
- A random function is with noticeable probability inside \mathcal{P}
- Given $f : \{0, 1\}^{n} \to \{0, 1\}$ we can test if $f \in \mathcal{P}$ in time $2^{O(n)}$.

Theorem 5.2. If there exists a natural property for $P/poly$ then any poly-size one-way function can be distinguished in time $2^{n\varepsilon}$ for all $\varepsilon > 0$.

Proof. Let $F(x)$ be a one-way poly-size function for inputs $x \in \{0, 1\}^{n}$. Let $x \in \{0, 1\}^{k}$ for some $k = n^{\varepsilon}$ by fixing the other bits to zero. As it is in $P/poly$ we can check it has property \mathcal{P} in time $2^{O(n^{\varepsilon})}$. This allows to distinguish it from random functions in sub-exponential time. \[\square\]

Consider for example the property we used to show that AC^0 cannot compute $PARITY$: we showed that every small depth circuit can be approximated non-trivially by a low-degree polynomial. Is this a natural property? the simple way to check this is too costly, as to check all polynomials of degree k we need to enumerate $\exp(n^k)$ coefficients. However, the proof actually used the following fact: we can write each function as

$$f(x) = p_1(x) + p_2(x)PARITY(x)$$

where p_1, p_2 are polynomials of degree $\leq n/2$. Lets define \mathcal{P} to be the property of these functions. Then if $C(x)$ can be approximated by polynomials of degree $\log(n)$ then $C(x) \not\in \mathcal{P}$, as it is not true that all functions can be approximated by a polynomial of degree $n/2 + \log(n)$.

\[\small 5\]