1 Circuits

A circuit is a non-uniform model of computation, with a fixed number of bits. Formally, an n-bit circuit C is given by a DAG with n inputs, one output, and where nodes correspond to basic gates (say, AND, OR, NOT). We denote $C(x)$ the value that an input $x \in \{0,1\}^n$ evaluate to when run through C. The size of a circuit is the number of wires it has.

Definition 1.1 (Size complexity). A language $L \subset \{0,1\}^*$ is in $\text{SIZE}(S(n))$ if for any $n \in \mathbb{N}$ there exists a circuit C_n of size $|C_n| \leq S(n)$ such that

$$\forall x \in \{0,1\}^n, \; x \in L \iff C_n(x) = 1.$$

For example, the language $L = \{1^n : n \in \mathbb{N}\}$ can be decided by a linear size circuit (computing the AND function).

Definition 1.2 (P/poly). $\text{P/poly} = \bigcup_{c \geq 1} \text{SIZE}(n^c)$.

2 Uniform vs nonuniform polynomial time

Theorem 2.1. $\text{P} \subset \text{P/poly}$.

Proof. This is very similar to the Cook-Levin theorem. Let $L \in \text{P}$ be computed by a Turing machine M. Assume M runs in time n^c. For a fixed input length n, let $N = n^c$ be a bound on the space and time used by M. We can represent the computation of M by $O(N^2)$ bits, representing the configuration of M in every step. Note that the configuration in step $i + 1$ can be computed by a linear-size circuit from the configuration in step i. Hence, the entire computation can be computed by a circuit of size $O(N^2)$.

Theorem 2.2. There are undecidable languages in P/poly.

Proof. Let L be any unary language, e.g. with only strings of the form 1^n. Then clearly $L \in \text{P/poly}$ since for every input length there is at most one element in L. However, L can be used to encode undecidable languages, for example $L = \{1^n : n = \langle M \rangle$ and M halts on the empty input$\}$.

1
3 Uniform circuits

Definition 3.1. A circuit class \(\{C_n : n \in \mathbb{N}\} \) is P-uniform if there exists a polynomial time TM which outputs \(C_n \) on input \(1^n \).

Theorem 3.2. \(L \) is computable by a P-uniform circuit class iff \(L \in \mathcal{P} \).

Proof. If \(L \) is computable by a P-uniform circuit class, then there is a Turing machine \(M \) such that \(M(1^n) = C_n \) and \(C_n(x) = 1 \iff x \in L \) for \(x \in \{0,1\}^n \). Let \(U \) be a simulator so that \(U(C_n, x) = C_n(x) \). Then \(x \in L \iff U(M(|x|), x) = 1 \) and hence \(L \in \mathcal{P} \). For the other direction, if \(L \in \mathcal{P} \), then one can verify that the poly-size circuit one gets for inputs of length \(n \) in \(L \) (that we showed in the proof of \(\mathcal{P} \subset \mathcal{P}/\text{poly} \)) can be computed by a poly-time machine given as input the input length \(1^n \).

4 Turing machines with advice

Definition 4.1. A language \(L \) is computed by a deterministic Turing machine in time \(T(n) \) with \(a(n) \) bits of advice, denoted \(L \in \text{TIME}(T(n))/a(n) \), if there exists a Turing machine \(M \) running in time \(T(n) \), and for every input length \(n \) there exists a string \(\alpha_n \in \{0,1\}^{a(n)} \), such that \(x \in L \iff M(x, \alpha_n) = 1 \).

Theorem 4.2. \(\mathcal{P}/\text{poly} = \bigcup_{c,d \geq 1} \text{TIME}(n^c)/n^d \).

Proof. If \(L \in \mathcal{P}/\text{poly} \), then the advice for length \(n \) is the circuit deciding the language, and the Turing machine evaluates an input in the circuit. If \(L \in \text{TIME}(n^c)/n^d \), then the circuit computes \(M(x, \alpha_n) \).

5 Boolean circuits and higher complexity classes

We believe that \(\mathcal{N} \not\subset \mathcal{P}/\text{poly} \). The following is a partial witness to that.

Theorem 5.1 (Karp-Lipton). If \(\mathcal{N} \subset \mathcal{P}/\text{poly} \) then \(\mathcal{PH} = \Sigma_2 \).

We would require the following claim first.

Claim 5.2. Assume that \(\mathcal{N} \subset \mathcal{P}/\text{poly} \). Then for every \(n \), there exists a circuit \(C_n \) as follows. It takes as input a 3-CNF formula \(\varphi \) on \(n \) variables, and if \(\varphi \) is satisfiable then it outputs a satisfying assignment to \(\varphi \). That is,

\[
\varphi \in 3-SAT \iff \varphi(C(\varphi)) = 1.
\]

Proof. If \(\mathcal{N} \subset \mathcal{P}/\text{poly} \) then there is a circuit \(C'_n \) such that \(C'_n(\phi) = 1 \iff \phi \) is satisfiable. We would use \(C'_n \) to discover a satisfying assignment. We find a satisfying assignment by
discovering its bits a_1, \ldots, a_n iteratively. Let us denote by $\phi_k(a_1, \ldots, a_k, x_{k+1}, \ldots, x_n)$ the 3-CNF ϕ when we plug in $x_1 = a_1, \ldots, x_k = a_k$. Define
\[a_1 = \begin{cases} 0 & \text{if } C'(\phi(0, x_2, \ldots, x_n)) = 1 \\ 1 & \text{otherwise} \end{cases} \]
and
\[a_i = \begin{cases} 0 & \text{if } C'(\phi(a_1, \ldots, a_{i-1}, 0, x_2, \ldots, x_n)) = 1 \\ 1 & \text{otherwise} \end{cases} \]
By construction, if ϕ is satisfiable then (a_1, \ldots, a_n) is a satisfying assignment. We can build a circuit computing a_1, \ldots, a_n of size $n \cdot |C'|$.

Proof of Karp-Lipton theorem. To prove that $PH = \Sigma_2$ it suffices to prove that $\Pi_2 \subseteq \Sigma_2$. A complete problem form Π_2 is $\Pi_2 SAT = \{ \phi : \forall u \in \{0, 1\}^n \exists v \in \{0, 1\}^n \phi(u, v) = 1 \}$, where ϕ is a 3-CNF. By our assumption, there is a circuit C_n such that for every u, $\phi(u, \cdot)$ is satisfiable iff $\phi(u, C_n(\phi, u)) = 1$. Hence
\[\phi \in \Pi_2 SAT \iff \forall u \in \{0, 1\}^n \phi(u, C_n(\phi, u)) = 1. \]
The only problem is how do we know C_n? well, we can guess it.
\[\phi \in \Pi_2 SAT \iff \exists C_n \forall u \in \{0, 1\}^n \phi(u, C_n(\phi, u)) = 1. \]

Theorem 5.3 (Meyer’s theorem). If $EXP \subseteq P/poly$ then $EXP = \Sigma_2$.

Proof. Let $L \in EXP$. Let M a Turing machine running in time $N = 2^n$ computing L. Consider the following language
\[L_M = \{(x, i, j) : i, j \leq 2^{|x|}, \text{the j-th bit of the i-th configuration of running M on x is 1 and M is in state} \}
\]
We also have that $L_M \in EXP$. Now, if $EXP \subset P/poly$ then for every input length $|x| = n$ there exists a circuit C_n of size $n^{O(1)}$ such that
\[(x, i, j) \in L_M \iff C_n(x, i, j). \]
In particular let $STATE(x, i)$ denote the bits representing the state of $M(x)$ in step i (say, the first few bits of the configuration). The only question is how do we find C_n, and how do we verify it gives the correct values. The answer is that verification is local. That is, we can verify correctness by
\[\forall i, j, VERIFY(C_n(x, i, j), \{C_n(x, i-1, j+a) : a = -1, 0, 1\}, STATE(x, i), STATE(x, i-1)). \]
So we get that
\[x \in L_M \iff \exists C_n \forall i, j \in \{0, 1\}^n VERIFY(C_n, x, i, j). \]
6 Hard functions

It is not hard to show that hard functions exist. What we don’t know is how to prove for specific explicit functions that they are hard.

Theorem 6.1. For every \(n \geq 1 \) there exists a function \(f: \{0, 1\}^n \to \{0, 1\}^n \) which requires circuits of size \(\Omega(2^n / n) \).

Proof. This is by a counting argument. The number of all functions is \(2^{2^n} \). To describe a circuit of size \(S \), we need to specify all the wires. Each wire takes \(O(\log S) \) bits, hence in total we need \(O(S \log S) \) bits. As long as \(2^{O(S \log S)} < 2^{2^n} \) there are functions which require size \(S \). This holds as long as \(S < O(2^n / n) \).

In fact, if we choose a random function (by choosing \(f(x) \) uniformly and independently for any input) then we get that with very high probability it requires size \(\Omega(2^n / n) \). We can also deduce a size hierarchy theorem.

Corollary 6.2. If \(T(n) < O(2^n / n) \) then \(\text{SIZE}(T(n) / \log(T(n))) \subsetneq \text{SIZE}(T(n) \cdot \log(T(n))) \).

Proof. Set \(\ell \) so that \(2^\ell = T(n) \). We shown that there is a function on \(\ell \) bits which cannot be computed in size \(O(2^\ell / \ell) \). However, any function on \(\ell \) bits can computed by a CNF of size \(O(2^\ell) \).