1 Nondeterministic TM, space and time complexity

Recall that NP is the class of languages, for which a “solution” can be verified in polynomial time. More generally, we can define nondeterministic time classes for any time bound. We first need to define a Non-Deterministic Turing Machine (NDTM).

Definition 1.1 (NDTM). A non-deterministic Turing Machine is the same as a standard TM, except that it has two transition functions δ_1, δ_2. At each step, it is allowed to “guess” which one to use. This defines many possible “paths” of computation (for t steps, it has 2^t possible pathes). An NDTM accepts an input x if

(i) It terminates on all paths of computation.

(ii) There exists a path on which it reaches the accept state.

Definition 1.2 (Nondeterministic time complexity). Let $T : \mathbb{N} \rightarrow \mathbb{N}$ be a time bound. A language L is in non-deterministic time T if there exists a NDTM M that computes L, such that on input x, all branches of computation of M terminate in at most $O(T(|x|))$ many steps. The class $NTIME(T)$ is the class of all such languages.

Definition 1.3 (Nondeterministic space complexity). Let $S : \mathbb{N} \rightarrow \mathbb{N}$ be a space bound. A language L is in non-deterministic space S if there exists a NDTM M that computes L, such that on input x, all branches of computation of M terminate and used at most $O(S(|x|))$ space. The class $NSPACE(S)$ is the class of all such languages.

We would discuss non-deterministic space in detail when we dive into space complexity. For now, let’s focus on non-deterministic time.

Lemma 1.4. $NP = \bigcup_{c \geq 1} NTIME(n^c)$.

Proof. We defined NP as the class of languages that can be verified in polynomial time. We need to show that this is equivalent to the existence of a poly-time NDTM that computes \(L \).

In one direction, assume \(L \) is computed by a NDTM \(M \). Then the witness for input \(x \) will be the sequence of steps that \(M \) makes that accept \(x \). Concretely, if \(M \) makes \(t \leq O(T(|x|)) \) steps then \(y \in \{0,1\}^t \). Clearly, one can verify that \(M \) accepts \(x \) on the path described by \(y \) in poly-time. For the other direction, assume that there exists a poly-time TM \(M' \) such that \(x \in L \iff \exists y, |y| \leq |x|^{O(1)}, M'(x,y) = 1 \). We can construct a NDTM \(M \) that first guesses \(y \) and writes it down, and then runs \(M' \) on \(x, y \).

2 CoNP

The class NP corresponds to problems which can be verified efficiently. The class coNP is the opposite - problems which can be refuted efficiently. Formally, for a language \(L \subset \{0,1\}^* \) let \(L^c = \{x \in \{0,1\}^* : x \notin L\} \) be the complement. Then

\[
\text{coNP} = \{L^c : L \in \text{NP}\}.
\]

For example,

\(\text{UNSAT} = \{\text{formulas with no satisfying assignment}\} \)

is in coNP.

Definition 2.1. A language \(L \) is coNP hard if for any \(L' \) in coNP we have \(L' \leq_p L \). If \(L \) is in coNP then \(L \) is said to be coNP complete.

Theorem 2.2. UNSAT is coNP complete.

Proof. Fix some efficient encoding of CNF formulas in \(\{0,1\}^* \) which is onto. Then \(UNSAT = SAT^c \). If \(L \) is in coNP then \(L^c \in \text{NP} \), hence \(L^c \leq_p SAT \), hence \(L \leq_p UNSAT \). \(\Box \)

3 Polynomial hierarchy

Let \(\mathcal{C} \) be a family of languages (like \(P, \text{NP}, \text{EXP} \)). We define \(\exists_p \mathcal{C} \) to be the set of languages \(L \) for which there exists \(c > 0 \) and a language \(L' \in \mathcal{C} \) such that

\[
x \in L \iff \exists y, |y| \leq |x|^c, (x,y) \in L'.
\]

Define \(\forall_p \mathcal{C} \) to be the set of languages \(L \) for which there exists \(c > 0 \) and a language \(L' \in \mathcal{C} \) such that

\[
x \in L \iff \forall y, |y| \leq |x|^c, (x,y) \in L'.
\]

We would often shorthand these as \(\exists \mathcal{C} = \exists_p \mathcal{C} \) and \(\forall \mathcal{C} = \forall_p \mathcal{C} \).

Lemma 3.1. \(\text{NP} = \exists P \) and \(\text{coNP} = \forall P \).
Proof. This is by definition. A language L is in NP if there exists a poly-time Turing machine M such that
\[x \in L \iff M(x, y) = 1. \]
Assume M runs in time n^c. Consider the language $L' = \{(x, y) : M(x, y) = 1\}$. It is in P since M is poly-time computable. Hence
\[x \in L \iff \exists y, |y| \leq |x|^c, (x, y) \in L'. \]
Similarly, if such an L' exists we can define M to be the Turing machine deciding L'. □

This allows us to define a hierarchy of complexity classes. Define
\[\Sigma_2 = \exists \forall P, \quad \Pi_2 = \forall \exists P \]
and generally
\[\Sigma_i = \exists \Pi_{i-1}, \quad \Pi_i = \forall \Sigma_{i-1}. \]
For example, $L \in \Sigma_3$ if
\[L = \{x : \exists y \forall z \exists w, M(x, y, z, w) = 1\} \]
where M is poly-time computable.

We define the polynomial hierarchy as
\[\text{PH} = \bigcup_{i \geq 1} \Sigma_i = \bigcup_{i \geq 1} \Pi_i. \]

Consider for example the problem of formula minimization.

Claim 3.2. MIN-CNF is in Σ_2.

Proof. To verify that $(\varphi, 1^k) \in \text{MINCNF}$ we need to provide a CNF formula ψ of size $\leq k$ computing φ. To verify this we need to check all inputs. Hence
\[(\varphi, 1^k) \in \text{MINCNF} \iff \exists \psi(|\psi| \leq k) \forall x, \phi(x) = \psi(x). \] □

4 Collapses: what if $P=NP$?

We believe that $P \neq NP$ and $NP \neq \text{coNP}$, and moreover that all the classes Σ_i, Π_i are distinct. The following theorem gives some intuition for this.

Theorem 4.1. If $P = NP$ then $\text{PH} = P$.

Proof. Assume $P = NP$. We will prove by induction on i that $\Sigma_i, \Pi_i = P$.

For $i = 1$ we know by assumption that $\Sigma_1 = \Pi_1 = NP$. Recall that $\Pi_1 = coNP$ is the class of languages L for which $L^c \in NP$. But if $NP = P$ then we can compute L^c, and hence compute L, in poly-time. So also $coNP = P$.

Assume we proven the theorem for i and we want to prove it for $i + 1$. We will prove it for Σ_{i+1}, the proof for Π_{i+1} is analogous. To recall, a language $L \in \Sigma_{i+1}$ if there exists a language $L' \in \Pi_i$ and $c > 0$ such that

$$x \in L \iff \exists y, |y| \leq |x|^c, (x,y) \in L'.$$

By the induction hypothesis, $L' \in P$. So there exists a poly-time TM M' computing it. But then $L \in NP$, which we assume is in P. So $\Sigma_{i+1} \subset P$. It also contains P clearly, so $\Sigma_{i+1} = P$.

We get similar collapses of PH if other classes collapse.

Theorem 4.2. If $NP = coNP$ then $PH = NP$.

Proof. We will prove that $\Sigma_i = \Pi_i = NP$ for all $i \geq 1$. The base case of $i = 1$ is our assumption. Assume by induction we proved it for i, and we want to prove it for $i + 1$. We will prove it for Σ_{i+1}, the proof for Π_{i+1} is analogous.

Let $L \in \Sigma_{i+1}$. By definition, there exists a language $L' \in \Pi_i$ and $c > 0$ such that

$$x \in L \iff \exists y, |y| \leq |x|^c, (x,y) \in L'.$$

By induction, $L' \in NP$. So there exists a language $L'' \in P$ and $c' > 0$ such that

$$(x,y) \in L' \iff \exists z, |z| \leq |(x,y)|^{c'}, (x,y,z) \in L''.$$

Combining these together gives (for $c'' = cc'$) that

$$x \in L \iff \exists y,z, |y| \leq |x|^c, |z| \leq |x|^{c''}, (x,y,z) \in L''.$$

We can view (y,z) as a single “solution” that the verifier L'' checks. As $L'' \in P$ we get that $L \in NP$, as claimed.

More generally, we have the following theorem.

Theorem 4.3. For any $i \geq 1$, if $\Sigma_i = \Pi_i$ then $PH = \Sigma_i$.

4