CSE200: Computability and complexity
Beyond NP

Shachar Lovett
April 16, 2013

1 CoNP

The class NP corresponds to problems which can be verified efficiently. The class coNP is the opposite - problems which can be refuted efficiently. Formally, for a language $L \subseteq \{0, 1\}^*$ let $L^c = \{x \in \{0, 1\}^* : x \notin L\}$ be the complement. Then

$$coNP = \{L^c : L \in NP\}.$$

For example,

$$UNSAT = \{\text{formulas with no satisfying assignment}\}$$

is in coNP.

Definition 1.1. A language L is coNP hard if for any L' in coNP we have $L' <_p L$. If L is in coNP then L is said to be coNP complete.

Theorem 1.2. $UNSAT$ is coNP complete.

Proof. Fix some efficient encoding of CNF formulas in $\{0, 1\}^*$ which is onto. Then $UNSAT = SAT^c$. If L is in coNP then $L^c \in NP$, hence $L^c <_p SAT$, hence $L <_p UNSAT$. \qed

Here is a different view on NP and coNP.

2 Polynomial hierarchy

Let C be a family of languages (like P, NP, EXP). We define $\exists^p C$ to be the set of languages L for which there exists $c > 0$ and a language $L' \in C$ such that

$$x \in L \iff \exists y, |y| \leq |x|^c, (x, y) \in L'.$$

Define $\forall^p C$ to be the set of languages L for which there exists $c > 0$ and a language $L' \in C$ such that

$$x \in L \iff \forall y, |y| \leq |x|^c, (x, y) \in L'.$$
Lemma 2.1. $NP = \exists P$ and $coNP = \forall P$.

Proof. This is by definition. A language L is in NP if there exists a poly-time Turing machine M such that
\[x \in L \iff M(x, y) = 1. \]
Assume M runs in time n^c. Consider the language $L' = \{(x, y) : M(x, y) = 1\}$. It is in P since M is poly-time computable. Hence
\[x \in L \iff \exists y, |y| \leq |x|^c, (x, y) \in L'. \]
Similarly, if such an L' exists we can define M to be the Turing machine deciding L'.

This allows us to define a hierarchy of complexity classes. Define
\[\Sigma_2 = \exists \forall P, \quad \Pi_2 = \forall \exists P \]
and generally
\[\Sigma_i = \exists \Pi_{i-1}, \quad \Pi_i = \forall \Sigma_{i-1}. \]
For example, $L \in \Sigma_3$ if
\[L = \{x : \exists y \forall z \exists w, M(x, y, z, w) = 1\} \]
where M is poly-time computable.

We define the polynomial hierarchy as
\[PH = \bigcup_{i \geq 1} \Sigma_i = \bigcup_{i \geq 1} \Pi_i. \]
Consider for example the problem of formula minimization.

$$MIN - CNF = \{(\varphi, 1^k) : \text{there is a CNF } \psi \text{ of size } \leq k \text{ computing } \varphi\}$$

Claim 2.2. $MIN-CNF$ is in Σ_2.

Proof. To verify that $(\varphi, 1^k) \in MINCNF$ we need to provide a CNF formula ψ of size $\leq k$ such that $\psi \equiv \varphi$. To verify this we need to check all inputs. Hence
\[(\phi, 1^k) \in MINCNF \iff \exists \psi(|\psi| \leq k)\forall x, \phi(x) = \psi(x). \]

3 Collapses

We believe that $P \neq NP$ and $NP \neq coNP$, and moreover that all the classes Σ_i, Π_i are distinct. The following theorem gives some intuition for this.

Theorem 3.1. If $\Sigma_i = \Pi_i$ then $PH = \Sigma_i$. If $P = NP$ (or $P=coNP$) then $PH = P$.

2
Proof. For simplicity, let’s assume NP = coNP and prove that this implies that \(\Sigma_2 = NP \). Let \(L \) be a language in \(\Sigma_2 \). Then

\[
L = \{ x : \exists y, |y| \leq n^c, \forall z, |z| \leq n^c, M(x, y, z) \}
\]

where \(M \) is poly-time computable. Define the language

\[
L' = \{ (x, y) : \forall z, |z| \leq n^c, M(x, y, z) \}.
\]

Clearly \(L' \) is in coNP. Since we assume \(NP = coNP \) we can find rewrite \(L' \) as

\[
L' = \{ (x, y) : \exists z, |z| \leq n^c, M'(x, y, z) \},
\]

where \(M' \) is also poly-time computable. Hence

\[
L = \{ x : \exists y, |y| \leq n^c, \exists z, |z| \leq n^c, M'(x, y, z) \}.
\]

Now we can ”combine” \(y, z \) to a single input, removing one level of alternation. \qed