Let $G=(V,E)$ be an undirected graph on n nodes and m edges. To simplify notations, we will assume that $V = [n]$, where to recall $[n] = \{1, \ldots, n\}$, with $[0] = \{\}$. A subset of nodes $V = \{ S \subset V \}$ defines a cut $E(S) = \{(u,v) : u \in S, v \not\in S\}$ in the graph. Define $e(S) = |E(S)|$ the number of edges in the cut.

The MAX-CUT problem is to find the maximal cut in the graph. It is known to be NP-complete, so we will try to approximate the solution.

Problem 1: Randomized 2-approximation of MAX-CUT

We give a randomized algorithm that (on expectation) gives a factor 2 approximation.

Algorithm:
Choose the cut S randomly as follows: for every node $v \in V$, include $v \in S$ independently with probability $\frac{1}{2}$.

Prove that the expected value of $E_S[e(S)]$ over this random choice is $\frac{m}{2}$. Argue why this is at least $\frac{1}{2}$ of the MAX-CUT value in the graph.

Problem 2: Derandomized MAX-CUT algorithm using conditional expectations

We now derandomize this algorithm. To do so, we will use the method of *conditional expectations*. We will construct S in n steps, where at the i-th step we will decide if to include node $i \in S$ or not.

In order to model this, for $t = 0, \ldots, n$ we denote by $S_t = S \cap [t]$ the set of nodes out of $[t]$ that happen to be in S. Given $S_t \subset [t]$, consider the randomized algorithm which fixes S_t and randomly chooses for each $i = t+1, \ldots, n$ whether to include i in S or not independently with probability $\frac{1}{2}$. Denote $e(t,S_t)$ the expected value of the cut obtained in this way.

(a) Show that $e(0,\{\}) = \frac{m}{2}$.
(b) Prove that for every $t = 0, \ldots, n$ and every $S_t \subset [t]$, the value $e(t,S_t)$ can be computed in deterministic polynomial time (hint: use linearity of expectation).
(c) Prove that for every $t = 0, \ldots, n-1$ and every $S_t \subset [t]$, there exists $S_{t+1} \subset [t+1]$ such that $S_t \subset S_{t+1}$ and $e(t+1,S_{t+1}) \geq e(t,S_t)$.
(d) Complete the proof, and show that a 2-approximation of the MAX-CUT value can be found in deterministic polynomial time.
Problem 3: Pairwise independence

A random variable $X \in \{0, 1\}^n$ is called pairwise-independent if for all $1 \leq i < j \leq n$ and all $a, b \in \{0, 1\}$, $Pr[X_i = a \text{ and } X_j = b] = 1/4$. That is, the restriction of X to any 2 coordinates is uniformly distributed in $\{0, 1\}^2$.

A function $H : \{0, 1\}^r \rightarrow \{0, 1\}^n$ is pairwise independent if the random variable $X = H(U)$ is pairwise independent, where $U \in \{0, 1\}^r$ is uniformly chosen. In this case, we say that X has seed length r. We will show a construction of such a H with seed length $r = \log n + O(1)$. H is called a “pseudorandom generator”.

Assume that $n = 2^k$. We will define a function $H : \{0, 1\}^r \rightarrow \{0, 1\}^n$, where we identify the coordinates of the output of H with $\{0, 1\}^k$, which is the binary expansion of the coordinate. Let $U \in \{0, 1\}^{k+1}$ be uniformly chosen. Write $U = u_1, \ldots, u_{k+1}$ where $u_i \in \{0, 1\}$. Define $H(U) \in \{0, 1\}^n$ as follows. For every $x \in \{0, 1\}^k$, the x-coordinate of $H(U)$ is defined to be

$$H(U)_x = (\sum_{i=1}^{k} u_i x_i) + u_{k+1} \pmod{2}$$

(a) Prove that $H(U)$ is pairwise independent.

(b) Prove that for general n (not necessarily a power of 2) this can be used to give a pairwise independent random variable $X \in \{0, 1\}^n$ with seed length $r = \log n + O(1)$.

(c) Prove that the construction is optimal: for any $H : \{0, 1\}^r \rightarrow \{0, 1\}^n$ which is pairwise independent, it must hold that $r \geq \log n$.

Hint: consider the $2^r \times n$ matrix $M_{u,i} = (-1)^{H(u)}$. Prove that its columns are pairwise orthogonal. Conclude that the columns must be linearly independent, and hence $2^r \geq n$.

Problem 4: Derandomized MAX-CUT algorithm using pairwise independence

Recall the randomized algorithm in question 1. For $x \in \{0, 1\}^n$ define its associated set $S(x) = \{v_i : x_i = 1\}$. One way to interpret the randomized algorithm in question 1 is that if $X \in \{0, 1\}^n$ is chosen uniformly, then the expected value of the cut is $E_X[e(S(X))] = m/2$.

(a) Prove that if $X \in \{0, 1\}^n$ is chosen from a pairwise independent distribution then also $E_X[e(S(X))] = m/2$.

(b) Combine this with the construction from problem 3, to give an alternative deterministic algorithm which finds a factor-2 approximation of the MAX-CUT value.