CSE140: Components and Design Techniques for Digital Systems

Decoders, adders, comparators, multipliers and other ALU elements

Tajana Simunic Rosing
Mux, Demux
Encoder, Decoder
Transmission Gate:
Mux/Tristate building block

• nMOS are on when gate=1
 – pass 1’s poorly from source to drain
• pMOS are on when gate=0
 – pass 0’s poorly from source to drain
• Transmission gate is a better switch
 – passes both 0 and 1 well
• When $EN = 1$, the switch is ON:
 – $EN = 0$ and A is connected to B
• When $EN = 0$, the switch is OFF:
 – A is not connected to $B
Floating: Z, Tristate Buffer and Tristate Busses

- Floating, high impedance, open, high Z
 - Disconnected
- Floating nodes are used in tristate busses
 - many different drivers, but only one is active at once

Tristate Buffer

<table>
<thead>
<tr>
<th>E</th>
<th>A</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Z</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Z</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Tristate Bus

- Processor
- Video
- Ethernet
- Memory
2:1 Multiplexer or Mux

- Selects between one of \(N \) inputs to connect to output
- \(\log_2 N \)-bit select input – control input
- **Example:**

<table>
<thead>
<tr>
<th>(S)</th>
<th>(D_1)</th>
<th>(D_0)</th>
<th>(Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\[Y = D_0 S + D_1 S \]
Multiplexers

- 2:1 mux: \(Z = A'I_0 + AI_1 \)
- 4:1 mux: \(Z = A'B'I_0 + A'BI_1 + AB'I_2 + ABI_3 \)
- 8:1 mux: \(Z = A'B'C'I_0 + A'B'Cl_1 + A'BC'I_2 + A'BCl_3 + AB'C'I_4 + AB'Cl_5 + ABC'I_6 + ABCl_7 \)

- In general: \(Z = \sum_{k=0}^{2^n-1} m_k I_k \)

- in minterm shorthand form for a \(2^n:1 \) Mux
Logic using Multiplexers

• Example of 2:1 mux implementation

\[Y = AB \]
Logic using Multiplexers

This multiplexer implements the same functionality for Y as the truth table.
A. Yes
B. No
Mux as general-purpose logic

Example: \[Z(A,B,C) = AC + BC' + A'B'C \]

\[
\frac{A(B+B')C + (A+A')BC'}{ABC + AB'C' + A'BC'}
\]

\[
AB(C+C') + AB'C' + ABC' + A'BC'
\]

4:1 MUX

Sources: TSR, Katz, Boriello & Vahid
Cascading muxes

Function $Z(A,B,C)$ implemented by 2:1 Muxes above is:
A. $A'B'C'+ABC+BC'$
B. $(A'+AC)B+B'C'$
C. $A'B'+B'C+BC'$
D. $A'+AC+BC'$
E. None of the above
Mux example: Logical function unit

<table>
<thead>
<tr>
<th>C0</th>
<th>C1</th>
<th>C2</th>
<th>Function</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>always 1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>A + B</td>
<td>logical OR</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>(A • B)'</td>
<td>logical NAND</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>A xor B</td>
<td>logical xor</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>A xnor B</td>
<td>logical xnor</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>A • B</td>
<td>logical AND</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>(A + B)'</td>
<td>logical NOR</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>always 0</td>
</tr>
</tbody>
</table>

Diagram:

A 4-bit multiplexer (8:1 MUX) is shown with inputs S2, S1, S0 and control inputs C0, C1, C2. The output F is determined by the logic function table above.
What is the output of the mux if En=1, S=10_2, D[3:0]=A_{16}?

- A. 0
- B. 1
- C. Z
- D. X
- E. None of the above

Selects between one of \(N \) inputs to connect to the output. \(\log_2 N \)-bit select input – control input.
Demultiplexers (opposite of Mux)

\[y_i = x \text{ if } i = (S_{n-1}, \ldots, S_0) \text{ & } En = 1 \]
\[y_i = 0 \text{ otherwise} \]
• N inputs, 2^N outputs
• One-hot outputs: only one output HIGH at a time when enable signal is 1 (EN=1)
Decoder: logic equations & implementation

- Decoders/demultiplexers
 - control inputs (called “selects” (S)) represent binary index of output to which the input is connected
 - data input usually called “enable” or G in equations>

1:2 Decoder:
\[
\begin{align*}
O_0 &= G \cdot S' \\
O_1 &= G \cdot S
\end{align*}
\]

2:4 Decoder:
\[
\begin{align*}
O_0 &= G \cdot S_1' \cdot S_0' \\
O_1 &= G \cdot S_1' \cdot S_0 \\
O_2 &= G \cdot S_1 \cdot S_0' \\
O_3 &= G \cdot S_1 \cdot S_0
\end{align*}
\]

3:8 Decoder:
\[
\begin{align*}
O_0 &= G \cdot S_2' \cdot S_1' \cdot S_0' \\
O_1 &= G \cdot S_2' \cdot S_1' \cdot S_0 \\
O_2 &= G \cdot S_2' \cdot S_1 \cdot S_0' \\
O_3 &= G \cdot S_2' \cdot S_1 \cdot S_0 \\
O_4 &= G \cdot S_2 \cdot S_1' \cdot S_0' \\
O_5 &= G \cdot S_2 \cdot S_1' \cdot S_0 \\
O_6 &= G \cdot S_2 \cdot S_1 \cdot S_0' \\
O_7 &= G \cdot S_2 \cdot S_1 \cdot S_0
\end{align*}
\]
Logic Using Decoders

- OR minterms

\[Y = AB + \overline{AB} \]
\[= A \oplus B \]
Another example

- \(F(A,B,C) = \Pi M(0,2,4) \)
Example as general-purpose logic

F1 = A'BC'D + A'B'CD + ABCD
F2 = ABC'D' + ABC
F3 = (A' + B' + C' + D')
Decoder Applications

Decoder converts a binary address to the assertion of the addressed device

\[y_i = 1 \text{ if } E = 1 \& (I_2, I_1, I_0) = i \]
\[y_i = 0 \text{ otherwise} \]

- **n inputs**
 - \(n = 3 \)
- **2^n outputs**
 - \(2^3 = 8 \)
Tree of Decoders

Implement a 6-2^6 decoder with 3-2^3 decoders.
At most one $I_i = 1$.

$(y_{n-1}, \ldots, y_0) = i$ if $I_i = 1$ & $En = 1$

$(y_{n-1}, \ldots, y_0) = 0$ otherwise.

$A = 1$ if $En = 1$ and one i s.t. $I_i = 1$

$A = 0$ otherwise.
Encoder: Logic Diagram

\[I_1 \rightarrow I_3 \rightarrow I_5 \rightarrow I_7 \rightarrow En \rightarrow y_0 \]

\[I_1 \rightarrow I_3 \rightarrow I_5 \rightarrow I_7 \rightarrow En \rightarrow y_1 \]

\[I_4 \rightarrow I_5 \rightarrow I_6 \rightarrow I_7 \rightarrow En \rightarrow y_2 \]

\[I_0 \rightarrow I_1 \rightarrow I_6 \rightarrow I_7 \rightarrow En \rightarrow A \]
Decoder, Encoder, Mux, Demux

Decoder: Decode the address to assert the addressed device
Mux: Select the inputs according to the index addressed by the control signals
Adders
1-Bit & Multi-bit Adders

Half Adder

\[S = A \oplus B \]
\[C_{out} = AB \]

Full Adder

\[S = A \oplus B \oplus C_{in} \]
\[C_{out} = AB + AC_{in} + BC_{in} \]

Types of multi-bit adders
- Ripple-carry (slow)
- Carry-lookahead (faster)

Symbol

Sources: TSR, Katz, Boriello & Vahid
Ripple-Carry Adder

- Chain 1-bit adders together
- Carry ripples through entire chain
- Disadvantage: slow

Ripple-carry adder delay

\[t_{\text{ripple}} = Nt_{FA} \]

where \(t_{FA} \) is the delay of a full adder
Carry-lookahead adders

- Adder with propagate (P) and generate (G) outputs:
- Evaluate Sum and Ci+1
 - Sum = Ai \text{xor} Bi \text{xor} Ci
 - Ci+1 = Ai Bi + Ai Ci + Bi Ci
 \quad = Ai Bi + Ci (Ai \text{xor} Bi)
 \quad = Gi + Ci Pi

Sources: TSR, Katz, Boriello & Vahid
Carry-Lookahead Adder

Example: 4-bit blocks \((G_{3:0} \text{ and } P_{3:0})\):

\[
G_{3:0} = G_3 + P_3 (G_2 + P_2 (G_1 + P_1 G_0))
\]
\[
P_{3:0} = P_3 P_2 P_1 P_0
\]

Generally:

- **Step 1:** Compute \(G_i \) and \(P_i\) for all columns
- **Step 2:** Compute \(G\) and \(P\) for \(k\)-bit blocks
- **Step 3:** \(C_{in}\) propagates through each \(k\)-bit propagate/generate block

\[
G_{i:j} = G_i + P_i (G_{i-1} + P_{i-1} (G_{i-2} + P_{i-2} G_j))
\]
\[
P_{i:j} = P_i P_{i-1} P_{i-2} P_j
\]
\[
C_i = G_{i:j} + P_{i:j} C_{i-1}
\]
Adders: CLA vs. Ripple

You are designing a 64-bit adder. To get the best performance, would you design:

A. A 64-bit ripple-carry adder
B. A 64-bit carry-lookaeadhead adder
C. 8-bit sections of carry-lookaeadhead with ripple carry connecting them
D. 32-bit sections of ripple-carry connected with carry-lookaeadhead
Subtractors
2s complement

- If N is a positive number, then the negative of N (its 2s complement or N*) is bit-wise complement plus 1
 - 7^* is -7: $0111 \rightarrow 1000 + 1 = 1001$ (-7)
 - -7* is 7: $1001 \rightarrow 0110 + 1 = 0111$ (7)
Subtraction

If you are using 4 bit number, what is the result of the following equation in 2s complement: \(y = 4 - 7 \)

A. 1011
B. 0011
C. 1101
D. 1100
E. None of the above
Detecting Overflow: Method 1

- Assuming 4-bit two’s complement numbers, one can detect overflow by detecting when the two numbers’ sign bits are the same but are different from the result’s sign bit
 - If the two numbers’ sign bits are different, overflow is impossible
 - Adding a positive and negative can’t exceed the largest magnitude positive or negative
- Simple circuit
 - \(\text{overflow} = a_3'b_3's_3 + a_3b_3s_3' \)

![Diagram of overflow detection](image)

If the numbers’ sign bits have the same value, which differs from the result’s sign bit, overflow has occurred.
Detecting Overflow: Method 2

- Detect a difference between carry-in to sign bit and carry-out from it
- Yields a simpler circuit: $\text{overflow} = c_3 \text{xor} c_4 = c_3 c_4' + c_3' c_4$

If the carry into the sign bit column differs from the carry out of that column, overflow has occurred.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>+</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

overflow (a)

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>+</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

overflow (b)

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>+</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

no overflow (c)
Subtractor

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sources: TSR, Katz, Boriello & Vahid
Adder/subtractor

In this schematic addition occurs when Sel signal is:
A. True
B. False
More ALU Components
Comparator: Equality

Symbol

\[
\begin{array}{c}
A_3 \\
B_3 \\
A_2 \\
B_2 \\
A_1 \\
B_1 \\
A_0 \\
B_0 \\
= \\
\text{Equal}
\end{array}
\]

Implementation

\[
\begin{array}{c}
A_3 \\
B_3 \\
A_2 \\
B_2 \\
A_1 \\
B_1 \\
A_0 \\
B_0 \\
\text{Equal}
\end{array}
\]
Comparator: Less Than

A < B

Sources: TSR, Katz, Boriello & Vahid
Shifters

• **Logical shifter:** shifts value to left or right and fills empty spaces with 0’s
 - Ex: \(11001 >> 2 = 00110\)
 - Ex: \(11001 << 2 = 00100\)

• **Arithmetic shifter:** same as logical shifter, but on right shift, fills empty spaces with the old most significant bit
 - Ex: \(11001 >>> 2 = 11110\)
 - Ex: \(11001 <<< 2 = 00100\)

• **Rotator:** rotates bits in a circle, such that bits shifted off one end are shifted into the other end
 - Ex: \(11001 \text{ ROR 2} = 01110\)
 - Ex: \(11001 \text{ ROL 2} = 00111\)
General Shifter Design

\[A_{3:0} \rightarrow 4 \rightarrow 4 \rightarrow Y_{3:0} \]

\[\text{shamt}_{1:0} \]

Sources: TSR, Katz, Boriello & Vahid
Multiplication of positive binary numbers

- Generalized representation of multiplication by hand

\[
\begin{array}{cccc}
 a_3 & a_2 & a_1 & a_0 \\
 x & b_3 & b_2 & b_1 & b_0 \\
\end{array}
\]

\[
\begin{array}{cccccccc}
 b_0a_3 & b_0a_2 & b_0a_1 & b_0a_0 & (pp1) \\
 b_1a_3 & b_1a_2 & b_1a_1 & b_1a_0 & 0 & (pp2) \\
 b_2a_3 & b_2a_2 & b_2a_1 & b_2a_0 & 0 & 0 & (pp3) \\
 b_3a_3 & b_3a_2 & b_3a_1 & b_3a_0 & 0 & 0 & 0 & (pp4) \\
\end{array}
\]

\[
\begin{array}{cccccccc}
 p_7 & p_6 & p_5 & p_4 & p_3 & p_2 & p_1 & p_0 \\
\end{array}
\]

For demo see: http://courses.cs.vt.edu/~cs1104/BuildingBlocks/multiply.010.html
Multiplier – Array Style

- Multiplier design – array of AND gates
Division of positive binary numbers

• Repeated subtraction
 – Set quotient to 0
 – Repeat while dividend ≥ divisor
 • Subtract divisor from dividend
 • Add 1 to quotient
 – When dividend < divisor:
 • Reminder = dividend
 • Quotient is correct

Example:
• Dividend: 101; Divisor: 10

<table>
<thead>
<tr>
<th>Dividend</th>
<th>Quotient</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>0 +</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>1 +</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
</tr>
</tbody>
</table>

For demo see: http://courses.cs.vt.edu/~cs1104/BuildingBlocks/Binary.Divide.html
ALU: Arithmetic Logic Unit
Designing an Arithmetic Logic Unit

- **ALU Control Lines (ALUop)**
 - 000: And
 - 001: Or
 - 010: Add
 - 110: Subtract
 - 111: Set-on-less-than
A One Bit ALU

- This 1-bit ALU performs AND, OR, and ADD

\[
\begin{array}{cccccc}
& & 1 & & & \\
& 1 & & 1 & & 0 & 0 \\
+ & 1 & 1 & & 1 & 0 \downarrow & 0 \downarrow & -4 \\
& 1 & 0 & 1 & & 1 & 0 \downarrow & -2 \\
& 1 & 0 & 1 & & 1 & 0 \downarrow & -6 \\
\end{array}
\]
A 32-bit ALU

1-bit ALU

32-bit ALU

Sources: TSR, Katz, Boriello & Vahid
Subtract – We’d like to implement a means of doing A-B (subtract) but with only minor changes to our hardware. How?

1. Provide an option to use bitwise NOT A
2. Provide an option to use bitwise NOT B
3. Provide an option to use bitwise A XOR B
4. Provide an option to use 0 instead of the first CarryIn
5. Provide an option to use 1 instead of the first CarryIn

<table>
<thead>
<tr>
<th>Selection</th>
<th>Choices</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1 alone</td>
</tr>
<tr>
<td>B</td>
<td>Both 1 and 2</td>
</tr>
<tr>
<td>C</td>
<td>Both 3 and 4</td>
</tr>
<tr>
<td>D</td>
<td>Both 2 and 5</td>
</tr>
<tr>
<td>E</td>
<td>None of the above</td>
</tr>
</tbody>
</table>
what signals accomplish ADD?

<table>
<thead>
<tr>
<th>Binvert</th>
<th>CIn</th>
<th>Oper</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>E</td>
<td>NONE OF THE ABOVE</td>
<td></td>
</tr>
</tbody>
</table>

sign bit (adder output from bit 31)
Full 32-bit ALU

what signals accomplish OR?

<table>
<thead>
<tr>
<th>Binvert</th>
<th>CIn</th>
<th>Oper</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>E</td>
<td>NONE OF THE ABOVE</td>
<td></td>
</tr>
</tbody>
</table>

sign bit (adder output from bit 31)
Full 32-bit ALU

What signals accomplish SUB?

<table>
<thead>
<tr>
<th>Binvert</th>
<th>CI_n</th>
<th>Oper</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>E</td>
<td>NONE OF THE ABOVE</td>
<td></td>
</tr>
</tbody>
</table>

Sign bit (adder output from bit 31)

Little more intense – can you get this?
Arithmetic Logic Unit – Example 2

<table>
<thead>
<tr>
<th>(F_{2:0})</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>A & B</td>
</tr>
<tr>
<td>001</td>
<td>A</td>
</tr>
<tr>
<td>010</td>
<td>A + B</td>
</tr>
<tr>
<td>011</td>
<td>Not used</td>
</tr>
<tr>
<td>100</td>
<td>A & \neg B</td>
</tr>
<tr>
<td>101</td>
<td>A</td>
</tr>
<tr>
<td>110</td>
<td>A - B</td>
</tr>
<tr>
<td>111</td>
<td>Not used</td>
</tr>
</tbody>
</table>
ALU Design Example 3

<table>
<thead>
<tr>
<th>S2</th>
<th>S1</th>
<th>S0</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>B-A</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>A-B</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>A+B</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>A xor B</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>A or B</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>A and B</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>