CSE140: Components and Design Techniques for Digital Systems

Decoders, adders, comparators, multipliers and other ALU elements

Tajana Simunic Rosing
Mux, Demux
Encoder, Decoder
Transmission Gate: Mux/Tristate building block

- nMOS are on when gate=1
 - pass 1’s poorly from source to drain
- pMOS are on when gate=0
 - pass 0’s poorly from source to drain
- Transmission gate is a better switch
 - passes both 0 and 1 well
- When $EN = 1$, the switch is ON:
 - $EN = 0$ and A is connected to B
- When $EN = 0$, the switch is OFF:
 - A is not connected to $B
Floating: Z, Tristate Buffer and Tristate Busses

- Floating, high impedance, open, high Z
 - Disconnected
- Floating nodes are used in tristate busses
 - many different drivers, but only one is active at once

Tristate Buffer

<table>
<thead>
<tr>
<th>E</th>
<th>A</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Z</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Z</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Tristate Bus

- processor
 - en1
 - to bus
 - from bus
- video
 - en2
 - to bus
 - from bus
- Ethernet
 - en3
 - to bus
 - from bus
- memory
 - en4
 - to bus
 - from bus

Sources: TSR, Katz, Boriello & Vahid
2:1 Multiplexer or Mux

- Selects between one of N inputs to connect to output
- $\log_2 N$-bit select input – control input

Example:

2:1 Mux

<table>
<thead>
<tr>
<th>S</th>
<th>D_1</th>
<th>D_0</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

$Y = D_0 \overline{S} + D_1 S$

Logic gates

Tristates

Pass gates

Sources: TSR, Katz, Boriello & Vahid
Multiplexers

- 2:1 mux: \(Z = A'I_0 + AI_1 \)
- 4:1 mux: \(Z = A'B'I_0 + A'BI_1 + AB'I_2 + ABI_3 \)
- 8:1 mux: \(Z = A'B'C'I_0 + A'B'CI_1 + A'BC'I_2 + A'BCI_3 + AB'C'I_4 + AB'CI_5 + ABC'I_6 + ABCI_7 \)

- In general: \(Z = \sum_{k=0}^{2^n-1} (m_k I_k) \) in minterm shorthand form for a \(2^n:1 \) Mux
Logic using Multiplexers

- Example of 2:1 mux implementation

\[Y = AB \]
This multiplexer implements the same functionality for \(Y \) as the truth table:

A. Yes

B. No

\[
\begin{array}{ccc|c}
A & B & Y \\
0 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
1 & 1 & 1 \\
\end{array}
\]

\(Y = AB \)
Mux as general-purpose logic

- Example: $Z(A,B,C) = AC + BC' + A'B'C$
Function $Z(A,B,C)$ implemented by 2:1 Muxes above is:

A. $A'B'C' + ABC + BC'$
B. $(A' + AC)B + B'C'$
C. $A'B' + B'C + BC'$
D. $A' + AC + BC'$
E. None of the above
Mux example: Logical function unit

<table>
<thead>
<tr>
<th>C2</th>
<th>C1</th>
<th>C0</th>
<th>Function</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>always 1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>A + B</td>
<td>logical OR</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>(A • B)'</td>
<td>logical NAND</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>A xor B</td>
<td>logical xor</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>A xnor B</td>
<td>logical xnor</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>A • B</td>
<td>logical AND</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>(A + B)'</td>
<td>logical NOR</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>always 0</td>
</tr>
</tbody>
</table>

![8:1 MUX diagram](image-url)
Selects between one of \(N \) inputs to connect to the output.

\[\log_2 N \text{-bit select input} - \text{control input} \]

What is the output of the mux if \(\text{En}=1, \text{S}=10_2, \text{D}[3:0]=A_{16} \)?

A. 0
B. 1
C. Z
D. X
E. None of the above
Demultiplexers (opposite of Mux)

\[y_i = x \text{ if } i = (S_{n-1}, \ldots, S_0) \& En = 1 \]
\[y_i = 0 \text{ otherwise} \]

Sources: TSR, Katz, Boriello & Vahid
Decoder

- N inputs, 2^N outputs
- One-hot outputs: only one output HIGH at a time when enable signal is 1 (EN=1)

<table>
<thead>
<tr>
<th>A_1</th>
<th>A_0</th>
<th>Y_3</th>
<th>Y_2</th>
<th>Y_1</th>
<th>Y_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Decoder: logic equations & implementation

- **Decoders/demultiplexers**
 - control inputs (called “selects” (S)) represent binary index of output to which the input is connected
 - data input usually called “enable” or G in equations

1:2 Decoder:
- \(O_0 = G \cdot S' \)
- \(O_1 = G \cdot S \)

2:4 Decoder:
- \(O_0 = G \cdot S_1' \cdot S_0' \)
- \(O_1 = G \cdot S_1' \cdot S_0 \)
- \(O_2 = G \cdot S_1 \cdot S_0' \)
- \(O_3 = G \cdot S_1 \cdot S_0 \)

3:8 Decoder:
- \(O_0 = G \cdot S_2' \cdot S_1' \cdot S_0' \)
- \(O_1 = G \cdot S_2' \cdot S_1' \cdot S_0 \)
- \(O_2 = G \cdot S_2' \cdot S_1 \cdot S_0' \)
- \(O_3 = G \cdot S_2' \cdot S_1 \cdot S_0 \)
- \(O_4 = G \cdot S_2 \cdot S_1' \cdot S_0' \)
- \(O_5 = G \cdot S_2 \cdot S_1' \cdot S_0 \)
- \(O_6 = G \cdot S_2 \cdot S_1 \cdot S_0' \)
- \(O_7 = G \cdot S_2 \cdot S_1 \cdot S_0 \)
Logic Using Decoders

- OR minterms

\[Y = AB + \overline{AB} = A \oplus B \]
Another example

- $F(A,B,C) = \Pi M(0,2,4)$
Example as general-purpose logic

F1 = A'BC'D + A'B'CD + ABCD
F2 = ABC'D' + ABC
F3 = (A' + B' + C' + D')

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>A'B'C'D'</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>A'B'C'D</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>A'B'CD'</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>A'B'CD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>A'B'C'D'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>A'B'C'D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>A'BC'D'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>A'BC'D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>AB'C'D'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>AB'C'D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>AB'CD'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>AB'CD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>ABC'D'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>ABC'D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>ABCD'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>ABCD</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sources: TSR, Katz, Boriello & Vahid
Decoder Applications

Decoder converts a binary address to the assertion of the addressed device.

n inputs
n= 3

2^n outputs
2^3= 8

n to 2^n decoder function:

y_i = 1 if E = 1 & (I_2, I_1, I_0) = i
y_i = 0 otherwise

E (enable)
Implement a 6-2^6 decoder with 3-2^3 decoders.
At most one $I_i = 1$.

$(y_{n-1}, \ldots, y_0) = i$ if $I_i = 1 \& \; En = 1$

$(y_{n-1}, \ldots, y_0) = 0$ otherwise.

$A = 1$ if $En = 1$ and one i s.t. $I_i = 1$

$A = 0$ otherwise.
Decoder, Encoder, Mux, Demux

Decoder: Decode the address to assert the addressed device
Mux: Select the inputs according to the index addressed by the control signals

Sources: TSR, Katz, Boriello & Vahid
Adders
1-Bit & Multi-bit Adders

Half Adder

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C\text{out}</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

\[S = A \oplus B \]
\[C\text{out} = AB \]

Full Adder

<table>
<thead>
<tr>
<th>C\text{in}</th>
<th>A</th>
<th>B</th>
<th>C\text{out}</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\[S = A \oplus B \oplus C\text{in} \]
\[C\text{out} = AB + AC\text{in} + BC\text{in} \]

Types of multi-bit adders
- Ripple-carry (slow)
- Carry-lookahead (faster)

Symbol

Sources: TSR, Katz, Boriello & Vahid
Ripple-Carry Adder

- Chain 1-bit adders together
- Carry ripples through entire chain
- Disadvantage: slow

Ripple-carry adder delay

\[t_{\text{ripple}} = Nt_{FA} \]

where \(t_{FA} \) is the delay of a full adder
Carry-lookahead adders

- Adder with propagate (P) and generate (G) outputs:

- Evaluate Sum and Ci+1
 - Sum = Ai \text{xor} Bi \text{xor} Ci
 - Ci+1 = Ai Bi + Ai Ci + Bi Ci
 = Ai Bi + Ci (Ai \text{xor} Bi)
 = Gi + Ci Pi

increasingly complex logic for carries
Example: 4-bit blocks ($G_{3:0}$ and $P_{3:0}$):

$$G_{3:0} = G_3 + P_3 (G_2 + P_2 (G_1 + P_1 G_0))$$
$$P_{3:0} = P_3 P_2 P_1 P_0$$

Generally:

- **Step 1**: Compute G_i and P_i for all columns
- **Step 2**: Compute G and P for k-bit blocks
- **Step 3**: C_{in} propagates through each k-bit propagate/generate block

$$G_{i:j} = G_i + P_i (G_{i-1} + P_{i-1} (G_{i-2} + P_{i-2} G_j))$$
$$P_{i:j} = P_i P_{i-1} P_{i-2} P_j$$
$$C_i = G_{i:j} + P_{i:j} C_{i-1}$$
Adders: CLA vs. Ripple

You are designing a 64-bit adder. To get the best performance, would you design:

A. A 64-bit ripple-carry adder
B. A 64-bit carry-lookahead adder
C. 8-bit sections of carry-lookahead with ripple carry connecting them
D. 32-bit sections of ripple-carry connected with carry-lookahead
Subtractors
2s complement

• If N is a positive number, then the negative of N (its 2s complement or \(N^* \)) is bit-wise complement plus 1

 - \(7^* \) is -7: \(0111 \rightarrow 1000 + 1 = 1001 \) (-7)
 - \(-7^* \) is 7: \(1001 \rightarrow 0110 + 1 = 0111 \) (7)
Subtraction

If you are using 4 bit number, what is the result of the following equation in 2s complement: $y = 4 - 7$

A. 1011
B. 0011
C. 1101
D. 1100
E. None of the above
Detecting Overflow: Method 1

- Assuming 4-bit two’s complement numbers, one can detect overflow by detecting when the two numbers’ sign bits are the same but are different from the result’s sign bit
 - If the two numbers’ sign bits are different, overflow is impossible
 - Adding a positive and negative can’t exceed the largest magnitude positive or negative
- Simple circuit
 - overflow = \text{a}_3 \text{b}_3 \text{s}_3 + \text{a}_3 \text{b}_3 \text{s}_3'

\[
\begin{array}{cccc}
\text{sign bits} & 0 & 1 & 1 & 1 \\
+ & 0 & 0 & 0 & 1 \\
\hline
& 1 & 0 & 0 & 0 \\
\end{array}
\quad \begin{array}{cccc}
\text{overflow (a)} & 1 & 1 & 1 & 1 \\
+ & 1 & 0 & 0 & 0 \\
\hline
& 1 & 1 & 1 & 1 \\
\end{array}
\quad \begin{array}{cccc}
\text{no overflow (c)} & 1 & 0 & 0 & 0 \\
+ & 0 & 1 & 1 & 1 \\
\hline
& 1 & 1 & 1 & 1 \\
\end{array}
\]

If the numbers’ sign bits have the same value, which differs from the result’s sign bit, overflow has occurred.
Detecting Overflow: Method 2

- Detect a difference between carry-in to sign bit and carry-out from it
- Yields a simpler circuit: overflow = c3 xor c4 = c3 c4' + c3' c4

If the carry into the sign bit column differs from the carry out of that column, overflow has occurred.
Subtractor

Symbol

Implementation
In this schematic addition occurs when Sel signal is:
A. True
B. False
More ALU Components
Comparator: Equality

Symbol

Implementation

Sources: TSR, Katz, Boriello & Vahid
Comparator: Less Than

\[A < B \]
Shifters

- **Logical shifter:** shifts value to left or right and fills empty spaces with 0’s
 - Ex: $11001 >> 2 = 00110$
 - Ex: $11001 << 2 = 00100$

- **Arithmetic shifter:** same as logical shifter, but on right shift, fills empty spaces with the old most significant bit
 - Ex: $11001 >>> 2 = 11110$
 - Ex: $11001 <<< 2 = 00100$

- **Rotator:** rotates bits in a circle, such that bits shifted off one end are shifted into the other end
 - Ex: 11001 ROR 2 = 01110
 - Ex: 11001 ROL 2 = 00111

Sources: TSR, Katz, Boriello & Vahid
General Shifter Design

\[\text{shamt}_{1:0} \]

\[A_{3:0} \rightarrow 4 \rightarrow Y_{3:0} \]
Multiplication of positive binary numbers

- Generalized representation of multiplication by hand

\[
\begin{array}{cccc}
 a_3 & a_2 & a_1 & a_0 \\
 \times & b_3 & b_2 & b_1 & b_0 \\
\hline
 b_0a_3 & b_0a_2 & b_0a_1 & b_0a_0 & (pp1) \\
 b_1a_3 & b_1a_2 & b_1a_1 & b_1a_0 & 0 & (pp2) \\
 b_2a_3 & b_2a_2 & b_2a_1 & b_2a_0 & 0 & 0 & (pp3) \\
 + b_3a_3 & b_3a_2 & b_3a_1 & b_3a_0 & 0 & 0 & 0 & (pp4) \\
\hline
 p_7 & p_6 & p_5 & p_4 & p_3 & p_2 & p_1 & p_0
\end{array}
\]

For demo see: http://courses.cs.vt.edu/~cs1104/BuildingBlocks/multiply.010.html
Multiplier – Array Style

- Multiplier design – array of AND gates

```
A  B  P*
0 0 0
```

```
+ (5-bit)
0 0
```

```
+ (6-bit)
0 0
```

```
+ (7-bit)
0 0 0
```

```
A  B  P
```

Block symbol
Division of positive binary numbers

- Repeated subtraction
 - Set quotient to 0
 - Repeat while dividend >= divisor
 - Subtract divisor from dividend
 - Add 1 to quotient
 - When dividend < divisor:
 - Reminder = dividend
 - Quotient is correct

Example:
- Dividend: 101; Divisor: 10

<table>
<thead>
<tr>
<th>Dividend</th>
<th>Quotient</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
</tr>
</tbody>
</table>

For demo see: http://courses.cs.vt.edu/~cs1104/BuildingBlocks/Binary.Divide.html
ALU: Arithmetic Logic Unit
Designing an Arithmetic Logic Unit

ALU Control Lines (ALUop) Function

<table>
<thead>
<tr>
<th>ALUop</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>And</td>
</tr>
<tr>
<td>001</td>
<td>Or</td>
</tr>
<tr>
<td>010</td>
<td>Add</td>
</tr>
<tr>
<td>110</td>
<td>Subtract</td>
</tr>
<tr>
<td>111</td>
<td>Set-on-less-than</td>
</tr>
</tbody>
</table>

![Diagram of ALU](image)

- **A**
- **B**
- **ALUop**
- **Zero**
- **Result**
- **Overflow**
- **CarryOut**

Sources: TSR, Katz, Boriello & Vahid
A One Bit ALU

- This 1-bit ALU performs AND, OR, and ADD
A 32-bit ALU

1-bit ALU

32-bit ALU

Sources: TSR, Katz, Boriello & Vahid
Subtract – We’d like to implement a means of doing A-B (subtract) but with only minor changes to our hardware. How?

1. Provide an option to use bitwise NOT A
2. Provide an option to use bitwise NOT B
3. Provide an option to use bitwise A XOR B
4. Provide an option to use 0 instead of the first CarryIn
5. Provide an option to use 1 instead of the first CarryIn

<table>
<thead>
<tr>
<th>Selection</th>
<th>Choices</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1 alone</td>
</tr>
<tr>
<td>B</td>
<td>Both 1 and 2</td>
</tr>
<tr>
<td>C</td>
<td>Both 3 and 4</td>
</tr>
<tr>
<td>D</td>
<td>Both 2 and 5</td>
</tr>
<tr>
<td>E</td>
<td>None of the above</td>
</tr>
</tbody>
</table>
Full 32-bit ALU

what signals accomplish ADD?

<table>
<thead>
<tr>
<th>Binvert</th>
<th>CIn</th>
<th>Oper</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>E</td>
<td>NONE OF THE ABOVE</td>
<td></td>
</tr>
</tbody>
</table>

sign bit (adder output from bit 31)
Full 32-bit ALU

what signals accomplish OR?

<table>
<thead>
<tr>
<th>Binvert</th>
<th>CIn</th>
<th>Oper</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>E NONE OF THE ABOVE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

sign bit (adder output from bit 31)
Full 32-bit ALU

Little more intense – can you get this?

what signals accomplish SUB?

<table>
<thead>
<tr>
<th>Binvert</th>
<th>CIn</th>
<th>Oper</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>E</td>
<td>NONE OF THE ABOVE</td>
<td></td>
</tr>
</tbody>
</table>

sign bit (adder output from bit 31)
Arithmetic Logic Unit – Example 2

<table>
<thead>
<tr>
<th>(F_{2:0})</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>A & B</td>
</tr>
<tr>
<td>001</td>
<td>A</td>
</tr>
<tr>
<td>010</td>
<td>A + B</td>
</tr>
<tr>
<td>011</td>
<td>Not used</td>
</tr>
<tr>
<td>100</td>
<td>A & ~B</td>
</tr>
<tr>
<td>101</td>
<td>A</td>
</tr>
<tr>
<td>110</td>
<td>A - B</td>
</tr>
<tr>
<td>111</td>
<td>Not used</td>
</tr>
</tbody>
</table>

Sources: TSR, Katz, Boriello & Vahid
ALU Design Example 3

<table>
<thead>
<tr>
<th>S2</th>
<th>S1</th>
<th>S0</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>B-A</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>A-B</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>A+B</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>A xor B</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>A or B</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>A and B</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>