Today's learning goals

- Apply the Pumping Lemma in proofs of nonregularity
- Identify some nonregular sets
Pumping Lemma

If A is a regular language, then there is a number p (the pumping length) where, if s is any string in A of length at least p, then s may be divided into three pieces, $s = xyz$ such that:

- $|y| > 0$, and
- for each $i \geq 0$, $xy^iz \in A$,
- $|xy| \leq p$.

If for every positive integer p, there exists a string $s : 1s12p$ then for any division of s $S = xyz$ with $|y| > 0$ and $|xy| \leq p$. There exists an $i \geq 0$ such that $xy^iz \notin A$. A is non-regular.
Proof strategy

To prove that a language L is **not** regular

- Consider arbitrary positive integer p.
- Prove that p isn't a pumping length for L.
- Conclude that L does not have any pumping length and is therefore **not** regular.
Another example

Claim: The set \(\{a^m b^m a^n \mid m, n \geq 0\} \) is not regular.

Proof: Consider an arbitrary positive integer. WTS \(p \) is not a pumping length for \(L \).

Consider the string

\[s = \text{???} \]

1. \(|s| \geq p \) ?
2. \(s \) is in \(L \) ?
3. No matter how we cut \(s \) into three (viable) pieces, some related string obtained by "repeating" the middle part falls out of \(L \) ?
Aside...

To complete proofs with Pumping Lemma, we will need to build (useful) examples of strings with length $\geq p$ that are in a given language.

- $L_1 = \{a^m b^m a^n \mid m,n \geq 0\}$
- $L_2 = \{ww \mid w \text{ is a string over } \{0,1\}\}$
- $L_3 = \{ww^R \mid w \text{ is a string over } \{0,1\}\}$
Another example

Claim: The set \(\{a^n b^m a^n \mid m, n \geq 0\} \) is not regular.

Proof: … You must pick \(s \) carefully: we want \(|s| \geq p \) and \(s \) in \(L \) and \(s \) "can't be pumped”

Which choices of \(s \) cannot be used to complete the proof?
A. \(s = a^p b^p \)
B. \(s = aba \)
C. \(s = a^p b^p a^p \)
D. \(s = a^p b a^p \)
E. None of the above (all of these choices work).
Claim: \(A = \{a^m b^n a^m | n, m \geq 0 \} \) is non-regular.

Proof: Assume towards contradiction that \(A \) is regular.

\(\Rightarrow \) Pumping lemma \(\Rightarrow \) there is a pumping length \(p \).

Consider \(s = a^p b a^p \). So, if \(s = xyz \) with \(|xy| \leq p \),
\(x = a^r, y = a^k, z = a^t b a^p \) with \(r + k + t = p \),
\(k \geq 0. \) \(\boxed{xy^iz \in A} \)

Set \(i > 0 \). \(xz = a^r a^t b a^p \) and \(r + t < p \)
\(\Rightarrow xz \notin A \Rightarrow \) pumping lemma is not true \(\Rightarrow \) \(A \) is non-regular.
And another

Claim: The set \(\{ w w^R \mid w \text{ is a string over } \{0,1\} \} \) is not regular.

Proof: … You must pick \(s \) carefully: we want \(|s| \geq p\) and \(s \) in \(L \) and \(s \) "can't be pumped" … Consider \(i=\ldots\)

Which \(s \) and \(i \) let us complete the proof?
A. \(s = 0^p0^p, i=2 \) B. \(s = 0110, i=0 \) C. \(s = 0^p110^p, i=1 \) D. \(s = 1^p001^p, i=3 \) E. I don't know

\[S=xy^2, \quad x=1^r, \quad y=1^k, \quad z=1^t001^p \]
How do we choose i?

Claim: The set $\{0^j1^k \mid j,k \geq 0 \text{ and } j \geq k \}$ is not regular.

Proof: … You must pick s carefully: we want $|s| \geq p$ and s in L and s "can't be pumped" … Consider $i = \ldots$

Which s and i let us complete the proof?
A. $s = 0^p1^p$, $i=2$
B. $s = 0^p1^p$, $i=p$
C. $s = 0^p1^p$, $i=1$
D. $s = 0^p1^p$, $i=0$
E. I don't know
Claim: The set
\[L = \{ w \mid w \text{ has different #s of } 0\text{s and } 1\text{s OR has a } 1 \text{ before a } 0 \} \]
is nonregular.

Proof:
\[L = L_1 \cup L_2 \]
\[\overline{L} = \overline{L_1} \cap \overline{L_2} \]
where
\[L_1 = \{ w \mid w \text{ has different # of } 0\text{s and } 1\text{s} \} \]
\[L_2 = \{ w \mid w \text{ has a } 1 \text{ before a } 0 \} \]
if \(l_1, l_2 \) are regular then \(l_1 \cup l_2 \) is regular

if \(l_1 \) and \(l_2 \) are both non-regular, then \(l_1 \cup l_2 \) is non-regular.

if \(l_1 \cup l_2 \) is not regular then \(l_1 \) is not regular or \(l_2 \) is not regular.
Do we always need Pumping Lemma?

Claim: The set
\[L = \{ w \mid w \text{ has different #s of 0s and 1s OR has a 1 before a 0} \} \]

is nonregular.

Proof: Suppose \(L \) is regular.

\[L' = \{ w \in L \mid w \text{ has the same number of 0's and 1's AND w does not have a one before zero} \} \]

= \{ 0^n 1^n \mid n \geq 0 \}
Regular sets: not the end of the story

• Many **nice** / **simple** / **important** sets are not regular
• Limitation of the finite-state automaton model
 • Can't "count"
 • Can only remember finitely far into the past
 • Can't backtrack
 • Must make decisions in "real-time"
• We know computers are more powerful than this model…

Which conditions should we relax?
For next time

- Work on Individual HW3 **due Tuesday**

Pre class-reading for Wednesday: pages 111-112.

\[\{0^n 1^n \mid n \geq 0\} \]