Today's learning goals

• Apply the Pumping Lemma in proofs of nonregularity
• Identify some nonregular sets
Pumping Lemma

If A is a regular language, then there is a number p (the pumping length) where, if s is any string in A of length at least p, then s may be divided into three pieces, $s = x y z$ such that

- $|y| > 0$, and
- for each $i \geq 0$, $xy^i z \in A$,
- $|xy| \leq p$.

(Sipser p. 78 Theorem 1.70)
Claim: The set \(L = \{0^n1^n \mid n \geq 0\} \) is not regular.

Proof: Consider an arbitrary positive integer. WTS \(p \) is not a pumping length for \(L \). Consider the string \(s = 0^p1^p \). Then, \(s \) is in \(L \) and \(|s| = 2p \geq p \). Consider any division of \(s \) into three parts \(s = xyz \) with \(|y| > 0 \), \(|xy| \leq p \).

Since \(|xy| \leq p \), \(x = 0^k \), \(y = 0^m \), \(z = 0^r1^p \) with \(k + m + r = p \), and since \(|y| > 0 \), \(m > 0 \). Picking \(i = 0 \): \(xy^iz = xz = 0^k0^r1^p = 0^{k+r}1^p \), which is not in \(L \) because \(k + r < p \). Thus, no \(p \) can be a pumping length for \(L \) and \(L \) is not regular.
Proof strategy

To prove that a language L is not regular

• Consider arbitrary positive integer p.
• Prove that p isn't a pumping length for L.

• Conclude that L does not have any pumping length and is therefore not regular.
Another example

Claim: The set \(\{a^m b^m a^n \mid m, n \geq 0\} \) is not regular.

Proof: Consider an arbitrary positive integer. WTS \(p \) is not a pumping length for \(L \).
Consider the string

\[s = ??? \]

1. \(|s| \geq p \) ?
2. \(s \) is in \(L \) ?
3. No matter how we cut \(s \) into three (viable) pieces, some related string obtained by "repeating" the middle part falls out of \(L \) ?
To complete proofs with Pumping Lemma, we will need to
build (useful) examples of strings with \textbf{length} $\geq p$ that are
in a given language.

- $L_1 = \{a^m b^m a^n \mid m,n \geq 0\}$
- $L_2 = \{ ww \mid w \text{ is a string over } \{0,1\} \}$
- $L_3 = \{ ww^R \mid w \text{ is a string over } \{0,1\} \}$
Another example

Claim: The set \{a^m b^n a^n \mid m, n \geq 0\} is not regular.

Proof: \ldots You must pick s carefully: we want |s| \geq p and s in L and s "can't be pumped"

Which choices of s can be used to complete the proof?
A. s = a^p b^p
B. s = aba
C. s = a^p b^p a^p
D. s = b^p
E. None of the above
And another

Claim: The set \(\{w w^R \mid w \text{ is a string over } \{0,1\} \} \) is not regular.

Proof: … You must pick \(s \) carefully: we want \(|s| \geq p \) and \(s \) in \(L \) and \(s \) "can't be pumped" … **Consider** \(i=\ldots \)

Which \(s \) and \(i \) let us complete the proof?

A. \(s = 0^p0^p, i=2 \)
B. \(s = 0110, i=0 \)
C. \(s = 0^p110^p, i=1 \)
D. \(s = 1^p001^p, i=3 \)
E. I don't know
How do we choose i?

Claim: The set \(\{0^j1^k | j,k \geq 0 \text{ and } j \geq k \} \) is not regular.

Proof: … You must pick \(s \) carefully: we want \(|s| \geq p\) and \(s \) in \(L \) and \(s \) "can't be pumped" … Consider \(i = \ldots \)

Which \(s \) and \(i \) let us complete the proof?

A. \(s = 0^p1^p, \ i = 2 \) B. \(s = 0^p1^p, \ i = p \) C. \(s = 0^p1^p, \ i = 1 \) D. \(s = 0^p1^p, \ i = 0 \)
E. I don't know
Do we always need Pumping Lemma?

Claim: The set
{w | w has different #s of 0s and 1s OR has a 1 before a 0}
is nonregular.

Proof:
Regular sets: not the end of the story

• Many **nice / simple / important** sets are not regular
• Limitation of the finite-state automaton model
 • Can't "count"
 • Can only remember finitely far into the past
 • Can't backtrack
 • Must make decisions in "real-time"
• We know computers are more powerful than this model…

Which conditions should we relax?
For next time

• Work on Individual HW3 due Tuesday

Pre class-reading for Wednesday: pages 111-112.