Today's learning goals

• Explain the limits of the class of regular languages
• Justify why the Pumping Lemma is true
• Apply the Pumping Lemma in proofs of nonregularity
• Identify some nonregular sets
Proving nonregularity

How can we prove that a set is non-regular?

A. Try to design a DFA that recognizes it and, if the first few attempts don't work, conclude there is none that does.
B. Prove that it's a strict subset of some regular set.
C. Prove that it's the union of two regular sets.
D. Prove that its complement is not regular.
E. I don't know.
Bounds on DFA

- in DFA, memory = states

- Automata can only "remember"…
 - …finitely far in the past
 - …finitely much information

- If a computation path visits the same state more than once, the machine can't tell the difference between the first time and future times it visited that state.
Example!

\{ 0^n1^n \mid n \geq 0 \}

What are some strings in this set?
What are some strings not in this set?

Compare to $L(0^*1^*)$
Design a DFA? NFA?
Example!

\{ 0^n1^n \mid n \geq 0 \}

What are some strings in this set?
What are some strings not in this set?

Compare to \(L(0^*1^*) \)
Design a DFA? NFA?
Pumping

- Focus on computation path through DFA
Pumping

- Focus on computation path through DFA
Pumping

• Focus on computation path through DFA

Idea: if one long string is accepted, then many other strings have to be accepted too
Pumping Lemma

If A is a regular language, then there is a number p (the pumping length) where, if s is any string in A of length at least p, then s may be divided into three pieces, $s = x\ y\ z$ such that

- $|y| > 0$, and
- for each $i \geq 0$, $xy^iz \in A$,
- $|xy| \leq p$.
Pumping Lemma

If A is a regular language, then there is a number p (the pumping length) where, if s is any string in A of length at least p, then s may be divided into three pieces, $s = xy^i z$ such that

- $|y| > 0$, and
- for each $i \geq 0$, $xy^i z \in A$,
- $|xy| \leq p$.

Sipser p. 78 Theorem 1.70
Pumping Lemma
Pumping Lemma

• True for **all** (but not only) regular sets.

 • Can't be used to prove that a set *is* regular
 • Can be used to a prove that a set *is not* regular … **how?**
Negation

flash-back to CSE 20 😊

• Pumping lemma "There is \(p \), where \(p \) is a pumping length for \(L \)"

• Given a specific number \(p \), it being a pumping length for \(L \) means

\[
\forall s \left((|s| \geq p \land s \in L) \rightarrow \exists x \exists y \exists z \left(s = xyz \land |y| > 0 \land |xy| \leq p \land \forall i (xy^iz \in L) \right) \right)
\]

• So \(p \) not being a pumping length of \(L \) means

\[
\exists s \left(|s| \geq p \land s \in L \land \forall x \forall y \forall z \left((s = xyz \land |y| > 0 \land |xy| \leq p) \rightarrow \exists i (xy^iz \notin L) \right) \right)
\]
Proof strategy

To prove that a language L is not regular

• Consider arbitrary positive integer p.
• Prove that p isn't a pumping length for L.

• Conclude that L does not have any pumping length and is therefore not regular.
Using the Pumping Lemma

Claim: The set $L = \{0^n1^n \mid n \geq 0\}$ is not regular.
Using the Pumping Lemma

Claim: The set \(L = \{0^n1^n \mid n \geq 0\} \) is not regular.

Proof: Consider an arbitrary positive integer. WTS \(p \) is not a pumping length for \(L \).

How? Want to show that there is some string that *should* be pump'able but isn't.
Using the Pumping Lemma

\(L = \{0^n1^n \mid n \geq 0\} \) **CLAIM:** \(p \) is not a pumping length for \(L \).

How would you prove the claim?

A. Find a string with length \(\geq p \) that is not in \(L \).
B. Find a string with length \(< p \) that is in \(L \).
C. None of the above.

\(\exists s \ (|s| \geq p \land s \in L \land \forall x \forall y \forall z ((s = xyz \land |y| > 0 \land |xy| \leq p) \rightarrow \exists i(xy^iz \notin L)) \)
Using the Pumping Lemma

\[L = \{0^n1^n \mid n \geq 0\} \]

CLAIM: \(p \) is not a pumping length for \(L \).

WTS

\[\exists s \left(|s| \geq p \land s \in L \land \forall x \forall y \forall z \left((s = xyz \land |y| > 0 \land |xy| \leq p) \rightarrow \exists i (xy^iz \notin L) \right) \right) \]

Find a string \(s \) such that

1. \(|s| \geq p \)
2. \(s \) is in \(L \)
3. No matter how we cut \(s \) into three (viable) pieces, some related string obtained by repeating the middle part falls out of \(L \).
Using the Pumping Lemma

Claim: The set $L = \{0^n1^n \mid n \geq 0\}$ is not regular.

Proof: Consider an arbitrary positive integer. WTS p is not a pumping length for L.

Consider the string

$$s = 0^p1^p.$$

1. $|s| \geq p$?
2. s is in L ?
3. No matter how we cut s into three (viable) pieces, some related string obtained by repeating the middle part falls out of L ?
Using the Pumping Lemma

Claim: The set \(L = \{0^n1^n | n \geq 0\} \) is not regular.

Proof: Consider an arbitrary positive integer. WTS \(p \) is not a pumping length for \(L \). Consider the string \(s = 0^p1^p \). Then, \(s \) is in \(L \) and \(|s| = 2p \geq p \). Consider any division of \(s \) into three parts

\[s = xyz \text{ with } |y| > 0, \ |xy| \leq p. \]

Since \(|xy| \leq p \), \(x = 0^k \), \(y = 0^m \), \(z = 0^r1^p \) with \(k+m+r = p \),

and since \(|y| > 0, m > 0 \). Picking \(i = 0 \): \(xy^iz = xz = 0^k0^r1^p = 0^{k+r}1^p \),

which is not in \(L \) because \(k+r < p \). Thus, no \(p \) can be a pumping length for \(L \) and \(L \) is not regular.
WOW!
For next time

• Work on Group Homework 2 due Saturday

Pre class-reading for Monday: page 77.