CSE 105
THEORY OF COMPUTATION

"Winter" 2018

http://cseweb.ucsd.edu/classes/wi18/cse105-ab/
Today's learning goals

• Convert between regular expressions and automata
• Describe the limits of the class of regular languages
Subset construction examples
Theorem: For each language L, L is recognizable by some DFA iff L is recognizable by some NFA iff L is describable by some regular expression.
Inductive steps

Base cases

1. $R = a$, where $a \in \Sigma$
2. $R = \varepsilon$
3. $R = \emptyset$

Inductive steps

4. $R = (R_1 \cup R_2)$
5. $R = (R_1 \circ R_2)$
6. (R_1^*)

- Build DFAs (or NFAs) corresponding to base cases in inductive definitions of regular expressions.

- Describe constructions for DFAs corresponding to each of the inductive steps: union, concatenation, Kleene star.
Structural induction

• Base cases

Which of these recognizes \(L(\emptyset) \) ?
A. NFA #1
B. NFA #2
C. NFA #3
D. More than one of the above
E. None of the above
Structural induction

• Base cases

• Inductive steps

Input

Union

Concatenation

Kleene star

Thm 1.45, 1.47, 1.49 pp 59-62
Example

\[a^* (ab)^* \]
Example

$a^* \cup b^*$
From DFA to RegExp

Trace possible paths from start state to accept state.

Intermediate machines can have regular expressions on transitions.

First:

1. add new start state that has ε arrow to old start state
2. add new accept state that has ε arrows from old accept states (and ø arrows from nonaccept states)
From DFA to RegExp

Remove one state at a time.

- Restore automaton by modifying regular expressions on transitions that went through removed state.
Regular languages

To prove that a set of strings is regular:

1. Build a **DFA** whose language is this set. OR
2. Build an **NFA** whose language is this set. OR
3. Build a **regular expression** describing this set. OR
4. Use the **closure** properties of the class of regular languages to construct this set from others known to be regular (**complementation**, **union**, **intersection**, **concatenation**, **Kleene star**, **flipbits**, **reverse**, etc.)
New closure operations

• Strategy: want to show class of regular languages is closed under some operation

• Start with DFA M1, …, M2

• Design NFA that recognizes \(\text{OP}(L(M1), \ldots, L(M2)) \)
All roads lead to … regular sets?

Are there any languages over \{0,1\} that are not regular?

A. Yes: a language that is recognized by an NFA but not any DFA.

B. Yes: there is some finite language of strings over \{0,1\} that is not described by any regular expression.

C. No: all languages over \{0,1\} are regular because that's what it means to be a language.

D. No: for each set of strings over \{0,1\}, some DFA recognizes that set.

E. None of the above.
Counting languages

How many languages over \{0,1\} are there?

A. Finitely many because \{0,1\} is finite.
B. Finitely many because strings are finite.
C. Countably infinitely many because \{0,1\}^* is countably infinite.
D. Uncountably many because languages are in the power set of \{0,1\}^*.
E. None of the above.
Counting regular languages over \(\{0,1\} \n \leq \n \{ \text{regular expressions} \} \n \)

Each regular expression is a finite string over the alphabet \(\{0, 1, \varepsilon, \emptyset, (,), U, *\} \n \)

The set of strings over an alphabet is countably infinite.

Conclude: countably infinitely many regular languages.
Where we stand

Fact 1: There exist nonregular languages.

Fact 2: If we know some languages are nonregular, we can conclude others must be too. (cf. Discussion)

But, we don't have any specific examples of nonregular languages.

Yet.
For next time

- Work on Group Homework 2 due Saturday

Pre class-reading for Friday: page 77.