CSE 105
THEORY OF COMPUTATION

"Winter" 2018

http://cseweb.ucsd.edu/classes/wi18/cse105-ab/
Today's learning goals

- Determine if a language is regular
- Apply closure properties to conclude that a language is or isn't regular
- Prove closure properties of the class of regular languages
Regular languages

- DFA M over the alphabet Σ
 - For each string w over Σ, M either accepts w or rejects w
 - The **language recognized by** M is the set of strings M accepts
 a.k.a. the **language of** M is the set of strings M accepts
 a.k.a. $L(M) = \{ w \mid w$ is a string over Σ and M accepts $w\}$

- A language is **regular** iff there is some finite automaton that
 recognizes exactly it.
Justification?

To prove that the DFA we build, M, actually recognizes the language L

WTS $L(M) = L$

(1) Is every string accepted by M in L?

(2) Is every string from L accepted by M?

or contrapositive version: Is every string rejected by M not in L?
A useful (optional) bit of terminology

When is a string accepted by a DFA?

Computation of M on w: where do we land when start at q_0 and read each symbol of w one-at-a-time?

$$\delta^*(q, w) = \begin{cases} q & \text{if } w = \varepsilon \\ \text{let } w = av \text{ where } a \text{ is a symbol} \\ S^*(S(q, a), v) \end{cases}$$

Recursively defined function
Regular languages: bounds?

Is every finite language regular?

A. No: some finite languages are regular, and some are not.
B. No: there are no finite regular languages.
C. Yes: every finite language is regular.
D. I don't know.
Building DFA

Remember

States are our only (computer) memory.

Design and pick states with specific roles / tasks in mind.

"Have not seen any of desired pattern yet"

"Trap state"
Building DFA

DFA recognizing \{w | w contains the substring baba\}

DFA recognizing \{w | w doesn't contain the substring baba\}
Building DFA

New strategy

Express L in terms of **simpler languages** – use them as building blocks.

Example

$L = \{ w \mid w \text{ does not contain the substring baba} \}$

$= \text{the complement of the set}$

$\{w \mid w \text{ contains the substring baba}\}$
Complementation

Claim: If A is a regular language over $\{0,1\}^*$, then so is \overline{A}

aka "the class of regular languages is closed under complementation"

Proof idea: Let A be an arbitrary regular language.

Let M be a DFA that recognizes A.

Construct M' that recognizes \overline{A}.

$\Rightarrow \overline{A}$ is regular
Complementation

Claim: If A is a regular language over \{0,1\}^*, then so is \(\overline{A} \) aka "the class of regular languages is closed under complementation"

Proof: Let A be a regular language. Then there is a DFA \(M = (Q, \Sigma, \delta, q_0, F) \) such that \(L(M) = A \). We want to build a DFA whose language is \(\overline{A} \). Define

\[
M' = \quad ?
\]

Claim of Correctness \(L(M') = \overline{A} \)

Proof of claim…

\[
\overline{A} \subseteq L(M') \subseteq \overline{A}
\]
\(L(m') \subseteq \overline{A} \). Suppose \(\omega \in L(m') \)

\[S^*(q_0, \omega) = f \] for some \(f \in E \)

\(f \notin F \).

\[\Rightarrow \omega \notin L(M) \), \quad \Rightarrow \omega \notin A \Rightarrow \omega \in \overline{A} \)

\[\overline{A} \subseteq L(m') \). Suppose \(\omega \in \overline{A} \). \(\Rightarrow \omega \notin A \)

\[\Rightarrow S^*(q_0, \omega) = g \] for \(g \notin F \)

Finish.
Why closure proofs?

• General technique of proving a new language is regular

• Stretch the power of the model

• Puzzle!
Set operations

Input set(s) → OPERATION → Output set

- Complementation
- Kleene star
- Concatenation
- Union
- Intersection
- Set difference
The regular operations

For A, B languages over same alphabet, define:

\[A \cup B = \{ x \mid x \in A \text{ or } x \in B \} \]

\[A \circ B = \{ xy \mid x \in A \text{ and } y \in B \} \]

\[A^* = \{ x_1 x_2 \ldots x_k \mid k \geq 0 \text{ and each } x_i \in A \} \]

These are operations on sets!
Theorem: The class of regular languages over fixed alphabet Σ is closed under the union operation.

Proof:

What are we proving here?

A. For any set A, if A is regular then so is $A \cup A$.
B. For any sets A and B, if $A \cup B$ is regular, then so is A.
C. For two DFAs M_1 and M_2, $M_1 \cup M_2$ is regular.
D. None of the above.
E. I don't know.
Theorem: The class of regular languages over fixed alphabet Σ is closed under the union operation.

Proof: Let A_1, A_2 be any two regular languages over Σ. **WTS** that $A_1 \cup A_2$ is regular.

Goal: build a machine that recognizes $A_1 \cup A_2$.
Union

Sipser Theorem 1.25 p. 45

Goal: build a machine that recognizes $A_1 \cup A_2$.

Strategy: use machines that recognize each of A_1, A_2.

HOW?
"Run in parallel"

\[M = (Q_1 \times Q_2, \Sigma, \delta, q_0, F_1 \times F_2) \]

Start state: \((q_0, q_{02})\) when \(q_0\) is start of \(M_1\) and \(q_{02}\) is start of \(M_2\)

Accept state(s):

Transition function:

The set of accepting states for \(M\) is

A. \(F_1 \times F_2\)
B. \(\{(r, s) \mid r \text{ is in } F_1 \text{ and } s \text{ is in } F_2\}\)
C. \(\{(r, s) \mid r \text{ is in } F_1 \text{ or } s \text{ is in } F_2\}\)
D. \(F_1 \cup F_2\)
E. I don't know.
Proof: Let A_1, A_2 be any two regular languages over Σ. Given $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ such that $L(M_1) = A_1$ and $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ such that $L(M_2) = A_2$.

WTS that $A_1 \cup A_2$ is regular.

Define

$M = (Q_1 \times Q_2, \Sigma, \delta, (q_1, q_2), \{(r, s) \in Q_1 \times Q_2 \mid r \in F_1 \text{ or } s \in F_2\})$

with $\delta((r, s), x) = (\delta_1(r, x), \delta_2(s, x))$ for (r, s) in $Q_1 \times Q_2$ and x in Σ.

Why does $L(M) = A_1 \cup A_2$?
let \(w \in A_1 \cup A_2 \). then \(w \in A \), or \(w \in A_2 \).

Case 1: \(w \in A_1 \Rightarrow w \in L(M) \Rightarrow \delta_1^*(q_1, \omega) = \ell \in F_1 \)

\[
\delta^*(q_1, q_2, \omega) = (\delta_1^*(q_1, \omega), \delta_2^*(q_2, \omega))
\]

\[
= (\ell, ?) \in F
\]

\[
= \{ (r, s) | r \in F_1 \text{ or } s \in F_2 \}
\]

other direction exercise

(Hint: show if \(w \in A_1 \cup A_2 \) then \(w \in L(M) \))
Aside: Intersection

- How would you prove that the class of regular languages is closed under intersection?
- Can you think of more than one proof strategy?

\[A \cap B = \{ x \mid x \text{ in } A \text{ and } x \text{ in } B \} \]

De Morgan's Law

\[A \cap B = \overline{\overline{A} \cup \overline{B}} \]

\[A \cap B = \overline{\overline{A} \cup \overline{B}} \]
Payoff

$\{ w \mid w \text{ contains neither the substrings } aba \text{ nor } baab \}$

Is this a regular set?
Payoff

\{ w \mid w \text{ contains neither the substrings aba nor baab} \}

Is this a regular set?

A = \{ w \mid w \text{ contains aba as a substring} \}
B = \{ w \mid w \text{ contains baab as a substring} \}

\bar{A} \cap \bar{B} = \overline{A \cup B}
General proof structure/strategy

Theorem: For any L over Σ, if L is regular then [the result of some operation on L] is also regular.

Proof:

Given name variables for sets, machines assumed to exist.

WTS state goal and outline plan.

Construction using objects previously defined + new tools working towards goal. Give formal definition and explain.

Correctness prove that construction works.

Conclusion recap what you've proved.
The regular operations

For A, B languages over same alphabet, define:

$A \cup B = \{ x | x \in A \text{ or } x \in B \}$

$A \circ B = \{ xy | x \in A \text{ and } y \in B \}$

$A^* = \{ x_1 x_2 \ldots x_k | k \geq 0 \text{ and each } x_i \in A \}$

How can we prove that the concatenation of two regular languages is a regular language?
For next time

• Work on Group Homework 1 due Saturday

Pre class-reading for Friday:
- Page 48 (Figure 1.27 and description below it)
- Example 1.35 on page 52