Today's learning goals

• Determine if a language is regular
• Apply closure properties to conclude that a language is or isn't regular
• Prove closure properties of the class of regular languages
Regular languages

- DFA M over the alphabet Σ
 - For each string w over Σ, M either accepts w or rejects w
 - The **language recognized by** M is the set of strings M accepts
 - a.k.a. the **language of** M is the set of strings M accepts
 - a.k.a. $L(M) = \{ w \mid w \text{ is a string over } \Sigma \text{ and } M \text{ accepts } w \}$

A language is **regular** iff there is some finite automaton that recognizes **exactly** it.
Justification?

To prove that the DFA we build, M, actually recognizes the language L

\[\text{WTS } L(M) = L \]

(1) Is every string accepted by M in L?
(2) Is every string from L accepted by M?

or contrapositive version: Is every string rejected by M not in L?
A useful (optional) bit of terminology

When is a string accepted by a DFA?

Computation of M on w: where do we land when start at q_0 and read each symbol of w one-at-a-time?

$$\delta^*(q, w) =$$

Recursively defined function
Regular languages: bounds?

Is every finite language regular?

A. No: some finite languages are regular, and some are not.
B. No: there are no finite regular languages.
C. Yes: every finite language is regular.
D. I don't know.
Building DFA

Remember

States are our only (computer) memory.

Design and pick states with specific roles / tasks in mind.

"Have not seen any of desired pattern yet"
"Trap state"
Complementation

(\{q_1, q_2, q_3\}, \{a, b\}, \delta, q_1, ?)
Building DFA

New strategy

Express L in terms of **simpler languages** – use them as building blocks.

Example

$L = \{ w \mid w \text{ does not contain the substring baba} \}$

$= \text{the complement of the set} \quad \{ w \mid w \text{ contains the substring baba} \}$
Complementation

Claim: If A is a regular language over $\{0,1\}^*$, then so is \overline{A}
aka "the class of regular languages is closed under complementation"
Complementation

Claim: If A is a regular language over $\{0,1\}^*$, then so is \overline{A}

aka "the class of regular languages is closed under complementation"

Proof: Let A be a regular language. Then there is a DFA $M=(Q,\Sigma,\delta,q_0,F)$ such that $L(M) = A$. We want to build a DFA whose language is \overline{A}. Define

$$M' = \ ?$$

Claim of Correctness $L(M') = \overline{A}$

Proof of claim…
Why closure proofs?

• General technique of proving a new language is regular
• Stretch the power of the model
• Puzzle!
Set operations

Input set(s) → OPERATION → Output set

Complementation ✔
Kleene star
Concatenation
Union
Intersection
Set difference
The regular operations

For A, B languages over same alphabet, define:

$$A \cup B = \{ x | x \in A \text{ or } x \in B \}$$

$$A \circ B = \{ xy \mid x \in A \text{ and } y \in B \}$$

$$A^* = \{ x_1x_2\ldots x_k \mid k \geq 0 \text{ and each } x_i \in A \}$$

These are operations on sets!
Theorem: The class of regular languages over fixed alphabet Σ is closed under the union operation.

Proof:

What are we proving here?

A. For any set A, if A is regular then so is $A \cup A$.
B. For any sets A and B, if $A \cup B$ is regular, then so is A.
C. For two DFAs M_1 and M_2, $M_1 \cup M_2$ is regular.
D. None of the above.
E. I don't know.
The class of regular languages over fixed alphabet Σ is closed under the union operation.

Proof: Let A_1, A_2 be any two regular languages over Σ. WTS that $A_1 \cup A_2$ is regular.

Goal: build a machine that recognizes $A_1 \cup A_2$.
Union

Goal: build a machine that recognizes $A_1 \cup A_2$.

Strategy: use machines that recognize each of A_1, A_2.

HOW?

Input $\rightarrow M_1 \rightarrow M_2 \rightarrow$ Accept if either (or both) accepts

**** HOW? ****
"Run in parallel"

\[M = (Q_1 \times Q_2, \Sigma, \delta, ?, ?) \]

Start state:
Accept state(s):
Transition function:

The set of accepting states for \(M \) is

A. \(F_1 \times F_2 \)
B. \(\{ (r,s) | r \text{ is in } F_1 \text{ and } s \text{ is in } F_2 \} \)
C. \(\{ (r,s) | r \text{ is in } F_1 \text{ or } s \text{ is in } F_2 \} \)
D. \(F_1 \cup F_2 \)
E. I don't know.
Proof: Let \(A_1, A_2 \) be any two regular languages over \(\Sigma \). Given \(M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1) \) such that \(L(M_1) = A_1 \) and \(M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2) \) such that \(L(M_2) = A_2 \).

WTS that \(A_1 \cup A_2 \) is regular.

Define
\[
M = (Q_1 \times Q_2, \Sigma, \delta, (q_1, q_2), \{(r, s) \in Q_1 \times Q_2 \mid r \in F_1 \text{ or } s \in F_2\})
\]
with \(\delta((r, s), x) = (\delta_1(r, x), \delta_2(s, x)) \) for \((r, s) \in Q_1 \times Q_2 \) and \(x \in \Sigma \).

Why does \(L(M) = A_1 \cup A_2 \)?
Aside: Intersection

• How would you prove that the class of regular languages is closed under intersection?

• Can you think of more than one proof strategy?

\[A \cap B = \{ x | x \text{ in } A \text{ and } x \text{ in } B \} \]
Payoff

\{ w \mid w \text{ contains neither the substrings } \text{aba nor baab}\}

Is this a regular set?
Payoff

\{ w \mid w \text{ contains neither the substrings } aba \text{ nor } baab \}

Is this a regular set?

A = \{ w \mid w \text{ contains } aba \text{ as a substring} \}
B = \{ w \mid w \text{ contains } baab \text{ as a substring} \}

\overline{A \cap B} = \overline{A \cup B}
General proof structure/strategy

Theorem: For any L over Σ, if L is regular then [the result of some operation on L] is also regular.

Proof:
Given name variables for sets, machines assumed to exist.
WTS state goal and outline plan.
Construction using objects previously defined + new tools working towards goal. Give formal definition and explain.
Correctness prove that construction works.
Conclusion recap what you've proved.
The regular operations

For A, B languages over same alphabet, define:

$A \cup B = \{ x \mid x \in A \text{ or } x \in B \}$

$A \circ B = \{ xy \mid x \in A \text{ and } y \in B \}$

$A^* = \{ x_1 x_2 \ldots x_k \mid k \geq 0 \text{ and each } x_i \in A \}$

How can we prove that the concatenation of two regular languages is a regular language?
For next time

• Work on Group Homework 1 due Saturday

Pre class-reading for Friday:
 - Page 48 (Figure 1.27 and description below it)
 - Example 1.35 on page 52