Definitions

- Alphabet: non-empty finite set (Σ)
- Symbol: element of alphabet
- String over Σ: finite list of symbols from Σ
- Language over Σ: set of strings over Σ
- Regular expression over Σ: syntactic expression built up recursively
- Language described by a regular expression: set of strings matching pattern given by r.e.
Examples

1. \(R = a, \) where \(a \in \Sigma \)
2. \(R = \varepsilon \)
3. \(R = \emptyset \)
4. \(R = (R_1 \cup R_2) \)
5. \(R = (R_1 \circ R_2) \)
6. \((R_1^*) \)

- \(L(0 \cup 1)U1) = \{0, 1\} \)

- \(L(\Sigma \Sigma \Sigma \Sigma)^* = \) \}

- \(L(1^* \emptyset 0) = \) \}

\(\Sigma 1^* \circ \emptyset = \emptyset \)
\[\Sigma = \{0, 1\} \]

\[\Sigma \times \Sigma \times \Sigma = \{0000, 0001, 0010, 0011, \ldots\} \]

\[|\Sigma \times \Sigma \times \Sigma| = 16. \]

\[(\Sigma \times \Sigma \times \Sigma)^* = \{3, 0000, 0001, 0010, \ldots, 0010001, \ldots\} \]

\[= \{\omega \in \{0, 1\}^* \mid |\omega| = 4k, k \in \mathbb{Z}, k \geq 0\} \]

\[R_1 \circ R_2 = \{xy \mid x \in R_1, y \in R_2\} \]
A more complicated example

Which of the following strings is **not** in the language described by

\[
(\ (\ (00)^* \ (11) \) \ U \ 01 \)
\]

A. 00
B. 01
C. 1101
D. \(\varepsilon \)
E. I don't know
And another …

Let L be the language over $\{a,b\}$ described by the regular expression $((a \cup \emptyset) \ b^*)^*$

Which of the following is not true about L?

A. Some strings in L have equal numbers of a's and b's
B. L contains the string $aaaaaaa$
D. L can also be represented by the regular expression $(ab^*)^*$

E. More than one of the above.
Regular expressions in practice

- **Compilers**: first phase of compiling transforms Strings to Tokens *keywords, operators, identifiers, literals*
 - One regular expression for each token type

- **Other software tools**: grep, Perl, Python, Java, Ruby, …
Regular expressions

Which regular expressions describe languages that include the string a?

A. a^*b^*
B. $a(ba)^*b$
C. $a^* \cup b^*$
D. $(aaa)^*$
E. $(\varepsilon \cup a)b = \{b, ab\}$

Frequency: AB

To change your remote frequency
1. Press and hold power button until flashing
2. Enter two-letter code
3. Checkmark / green light indicates success
In practice

• How do computers check if a string is in the language described by a regular expression?

grep 'password' /etc/passwd
Pre-class reading

• Tracing the computation of a finite automata using its state diagram.
• Formal definition of finite automaton.

From the website:

DFA Reading Sec 1.1: Figure 1.4 (p. 34), Definition 1.5 (p. 35)
Optional extra practice: Chapter 1 Exercise # 1, 2, 3
Deterministic Finite Automaton

Start state(s)?
Accept state(s)?
Transitions?
Deterministic Finite Automaton

Input: string

Output: \(\frac{\text{yes/no}}{\text{true/false}} \)

Computation of the machine on an input string

Sequence of states in the machine, starting with the initial state, determined by transitions of the machine as it reads additional input symbols.
Deterministic Finite Automaton

Computation of the machine on an input string

Sequence of states in the machine, starting with the initial state, determined by transitions of the machine as it reads additional input symbols.

Machine accepts the input string if you end up at an accept state after reading the entire string.

Machine rejects the input string if

The **language recognized by the machine** is the set of strings it accepts.
Examples

1. Which of these automata recognize the same language?
 - A. All of them.
 - B. 1. and 2.
 - C. 1. and 3.
 - D. 2. and 3.
 - E. None of them (they each recognize different languages).

2. Which of these automata recognize the same language?
 - A. All of them.
 - B. 1. and 2.
 - C. 1. and 3.
 - D. 2. and 3.
 - E. None of them (they each recognize different languages).
A finite automaton is a 5-tuple \((Q, \Sigma, \delta, q_0, F')\) where

1. \(Q\) is a finite set called the states
2. \(\Sigma\) is a finite set called the alphabet
3. \(\delta : Q \times \Sigma \rightarrow Q\) is the transition function
4. \(q_0 \in Q\) is the start state
5. \(F \subseteq Q\) is the set of accept states.
Can there be more than one start state in a finite automaton?

A. Yes, because of line 4.
B. No, because of line 4.
C. I don't know
A finite automaton is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\) where

1. \(Q\) is a finite set called the states
2. \(\Sigma\) is a finite set called the alphabet
3. \(\delta : Q \times \Sigma \rightarrow Q\) is the transition function
4. \(q_0 \in Q\) is the start state
5. \(F \subseteq Q\) is the set of accept states.

How many outgoing arrows from each state?
A. May be different number at each state.
B. Must be 2.
C. Must be \(|Q|\).
D. Must be \(|\Sigma|\).
E. I don't know.
An example

Define $M = (\{q_1, q_2, q_3, q_4\}, \{a, b\}, \delta, q_1, \{q_4\})$ where the function δ is specified by its table of values:

<table>
<thead>
<tr>
<th>Input in $Q \times \Sigma$</th>
<th>Output in Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_1, a)</td>
<td>q_3</td>
</tr>
<tr>
<td>(q_2, a)</td>
<td>q_2</td>
</tr>
<tr>
<td>(q_3, a)</td>
<td>q_3</td>
</tr>
<tr>
<td>(q_4, a)</td>
<td>q_2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Input in $Q \times \Sigma$</th>
<th>Output in Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_1, b)</td>
<td>q_2</td>
</tr>
<tr>
<td>(q_2, b)</td>
<td>q_2</td>
</tr>
<tr>
<td>(q_3, b)</td>
<td>q_4</td>
</tr>
<tr>
<td>(q_4, b)</td>
<td>q_4</td>
</tr>
</tbody>
</table>

Draw the state diagram for the DFA with this formal definition.
An example

({q1, q2, q3, q4}, {a, b}, δ, q1, {q4})

What's an example of a

- length 1 string accepted by this DFA?
- length 1 string rejected by this DFA?

- length 2 string accepted by this DFA?
- length 2 string rejected by this DFA?
An example

What's the best description of the language recognized by this DFA?

A. Starts with b and ends with a or b
B. Starts with a and ends with a or b
C. a's followed by b's
D. More than one of the above
E. I don't know.

and using set notation?
An example

This DFA recognizes the language of all strings of the form a's followed by b's

i.e. \(\{ a^n b^k \mid n, k \geq 1 \} \)
An example \(\{ a^n b^k \mid n,k \geq 1 \} \)

Is this the same as the language described by

A. \(a^* b^* \)
B. \(a(ba)^* b \)
C. \(a^* \cup b^* \)
D. \(a(ab)^* b \)
E. \((\varepsilon \cup a)b \)
For next time

• Individual Homework 0 due Saturday
 • Set up course tools: Gradescope, Piazza
 • Read all the questions + relevant examples in the book
 • Start working 😊
 • Review CSE 20 / Math 109 / CSE 21 / Sipser Ch 0 as needed.

• Discussion section Thursday "Breadth"
 • Regular expressions and DFAs

Pre class-reading for Friday: Example 1.21