CSE 105 THEORY OF COMPUTATION

*an Hw solutions available

Winter 2018 review class

* Review Quiz 10 * new individual report today

Today's learning goals

- Summarize key concepts, ideas, themes from CSE 105.
- Approach your final exam studying with confidence.
- Identify areas to focus on while studying for the exam.

Reminders

- CAPE and TA evaluations open
- Final exam Saturday March 17 11:30am-2:29pm
- Seat map & study guide on Piazza.
 - Discussion tomorrow will go over some of study guide.

	Model of computation Formal definition? Design? Describe language?	Class of languages Closure properties? Which languages not in class?		
	Finite automata DFA NFA equiv to Regular expressions	Regular languages To show not in class: Pumping lemma		
	Push-down automata	Context-free languages (s+* c k)		
	TMs that always halt in polynomial time	Р		
	Nondeterministic TMs that halt in polynomial time	NP		
	TMs that always halt aka Deciders	Decidable languages To show not in class: Diagonalization, reduction		
	Turing Machines (in general; may not halt)	Recognizable languages		

Roadmap of examples

- Regular language design
- B.)Undecidability via reduction
- C. Closure proofs
- D. Determining the language of a PDA /CFG
- Using Pumping Lemma

Given L, prove it is regular

Construction

Strategy 1: Construct DFA

Strategy 2: Construct NFA

Strategy 3: Construct regular expression

Proof of correctness

WTS 1 if w is in L then w is accepted by

WTS 2 if w is not in L then w is rejected by ...

Ex: L= $\{ w \text{ in } \{0,1\}^* \mid w \text{ has odd } \# \text{ of 1s OR starts with 0} \}$

NFA:

Regular expression:

To show a language is **not** regular, we can

Show there is a CFG generating A.

B. Use the pumping lemma for regular languages.

C. Show A is undecidable.

More than one of the abve.

E. I don't know.

To show a language L is ...

Recognizable

L(M) = L.

Use closure properties.

Not recognizable

 Show there is a TM M with
 Prove that L is not decidable and that the complement of L is recognizable.

Use closure properties.

To show a language L is ...

Decidable

 Show there is a TM D that always halts and L(D) = L.

 Find a decidable problem L' and show L reduces to L'

Use closure properties.

Not decidable

Use diagonalization

 Find an undecidable problem L' and show L' reduces to L.

Use closure properties.

Undecidability via reduction

Theorem: Problem T is undecidable.

Proof Common pattern for many of these proofs.

Assume (towards a contradiction) that T is decidable by TM M_T . use M_T to build a machine which will decide A_{TM} .

MON ETM. HALTIMETER

Define $M_{ATM} = "On input < M, w>$:

1. Using the parameters M and w, construct a different TM X such that if M accepts w, then <X> is in T; if M does not accept w, then <X> is not in T.

Run M_T on <X> and accept if M_T accepts, reject if M_T rejects."

Claim: M_{ATM} is decider and $L(M_{ATM}) = A_{TM}$. Then A_{TM} is decidable, contradicting the known fact that A_{TM} is undecidable.

$T = \{ \langle M \rangle \mid M \text{ is TM and } |L(M)| = 1 \}$

Theorem: Problem T is undecidable.

Proof

Assume (towards a contradiction) that T is decidable by TM M_T . Goal: use M_T to build a machine which will decide A_{TM} .

Define $M_{ATM} = "On input < M, w>$:

- 1. Using the parameters M and w, construct a different TM X such that if M accepts w, then <X> is in T; if M does not accept w, then <X> is not in T.
- 2. Run M_T on <X> and accept if accepts, reject if rejects.

Claim: M_{ATM} is decider and $L(M_{ATM}) = A_{TM}$. Then A_{TM} is decidable, contradicting the known fact that A_{TM} is undecidable.

Goal: reduce (HALTIM to T Given Geniel Decider for T Want to solve HALTIM * it <M, ~> "On input < M, w> ETIALT then L(X)=E* 1. Build X="On input x 1. If x = 101, accept. 2. if x = 401, Run M m w if < M, w> 2. Ask G about <X>
if yes, reject; if no, accept "

2. Ask G no, accept "

Undecidability via reduction

Theorem: Problem T is undecidable.

Proof Common pattern for many of these proofs.

Assume (towards - contradiction) that T is decidable by TM M

Goal: use M_T to the In reduction proofs,

Define $M_{ATM} = "O$

- 1. Using the par A. We always need to build a new TM X. such that if M B. The auxiliary machine X must be run as accept w, the part of our algorithm.
- 2. Run M_T on <> The auxiliary machine X runs only on w.

Claim: M_{ATM} is d. None of the above. decidable, contra

E. I don't know.

Countable and uncountable

Countable

- Find bijection with N
- Find a countable superset

Examples

Any language over Σ Set of all regular languages Set of rational numbers Set of integers

Uncountable

- Diagonalization
- Find an uncountable subset

Examples

Set of all subsets of Σ^*

Set of infinite binary sequences

Set of real numbers

[0,1]

Closure properties

high kvel descriptions

	Regular Languages		CFL		Decidable Languages	Recognizable Languages	
Union MFA	~]]	DFA (4)		*	~	1
Intersection	* >		X		~	~	
Complement	~		X		✓	X	
Star NFA	*		~	cFG	✓	~	
Concatenation NFA	*		~		✓	*	

Proving closure

Goal: "The class of _____ languages is closed under _____"

In other words Given a language in specific class, is the result of applying the operation _____ to this language still guaranteed to be in the class?

Proving closure

Given: What does it mean for L to be in class?

e.g. L a regular language, so given a DFA $M_L = (Q_L, \Sigma_L,$

 δ_L, q_L, F_L

with $L(M_L) = L$. Name each of the pieces!

WTS: The result of applying the operation to L is still in this class.

Construction: Build a machine that recognizes the result of applying the operation to L. Start with description in English!

e.g. Let M = (Q, Σ , δ , q₀, F) where Q=... Σ =... δ =... q₀=...F=..

M could be DFA or NFA

Correctness: Prove L(M) = result of applying operation to L

WTS1 if w is in set then w is accepted by M

WTS2 if w is not in the set then w rejected by M.

Claim: The class of recognizable languages is closed under concatenation

Given

WTS

Construction

Correctness

Claim: The class of recognizable languages is closed under concatenation

Given Two recognizable languages A,B and TMs that recognize them: M_A with $L(M_A) = A$ and M_B with $L(M_B) = B$.

WTS The language AB is recognizable.

Construction Define the TM M as "On input w,

- Nondeterministically split w into w = xy.
- 2. Simulate running M_A on x. If rejects, reject; if accepts go to 3.
- 3. Simulate running M_B on y. If rejects, reject; if accepts, accept."

Correctness

Construction Define the TM M as "On input w,

- 1. Nondeterministically split w into w = xy.
- 2. Simulate running M_A on x. If rejects, reject; if accepts go to 3.
- 3. Simulate running M_B on y. If rejects, reject; if accepts, accept.

Correctness Claim that w is in AB iff w is in L(M).

Part 1: Assume w is in AB. Then there are strings x,y such that w = xy and x is in A, y is in B. Running M on w, one of the nondeterministic ways we split w will be into these x,y. In step 2, the computation of M_A on x will halt and accept (because $L(M_A) = A$) so we go to step 3. In that step, the computation of M_B on y will halt and accept (because $L(M_B) = B$ so M accepts w.

Construction Define the TM M as "On input w,

- 1. Nondeterministically split w into w = xy.
- 2. Simulate running M_A on x. If rejects, reject; if accepts go to 3.
- 3. Simulate running M_B on y. If rejects, reject; if accepts, accept.

Correctness Claim that w is in AB iff w is in L(M).

Part 2: Assume w is not in AB. Then there are no strings x,y such that w = 1xy and x is in A, y is in B. In other words, for each way of splitting w into xy, at least one of the following is true: MA running on x will reject or loop, MR running on y will reject or loop. Tracing the computation of M on w, in each one of the nondeterministic computation paths, there is some split w=xy. For each of these splits, in step 2, the computation of M_A on x either loops (in which case M loops on w, so w is not in L(M)) or rejects (in which case M rejects w) or accepts (in which case M goe's to step 3). If the computation of M enters step 3, this means that x is in $L(M_A)$ so by our assumption, y is not in L(M_B) so M_B on y must either loop or reject. In either case, M rejects. Thus w is not in L(M).

Proving closure

Given: What does it mean for L to be in class?

```
e.g. L<sub>a</sub> regular language, so given a DFA M_1 = (Q_1, \Sigma_1, \Sigma_2)
\delta_L, q_L, F_L
                       To prove the class of recognizable languages
                with L is closed under _____ the constructions may
WTS:
                The reinvolve building a
Construction: Build a
                e.g. L

B. Nondeterministic decider.
                        C. Enumerator.
Correctness: Prove
                       DAll of the above.
                        E. I don't know.
```

Claim: The class of decidable languages is closed under reversal

Given

WTS

Construction

Correctness

Claim: The class of decidable languages is closed under reversal

Given A decidable language L, with a decider TM D: L(D)=L **WTS** There is a decider that decides $L^R = \{w \mid w^R \text{ is in } L\}$ **Construction** Define the TM M as "On input w:

- 1. Make a copy of w in reverse.
- 2. Simulate running D on this copy.
- 3. If D accepts, accept. If D rejects, reject.

Correctness If w is in L^R then in step 1, M builds w^R and in step 2, the computation of D on w^R will accept (because L(D) = L), so in step 3, M accepts w. If w is not in L^R then in step 1, M builds w^R and in step 2, the computation of D on w^R will rejept (because L(D) = L), so in step 3, M rejects w.

Claim: The class of decidable languages is closed under reversal

Given A decidable language L, with a decider TM D: L(D)=L

WTS There is a decider that decides $L^R = \{w \mid w^R \text{ is in } L\}$

- Make a copy o
- 2. Simulate runni
- If D accepts, a

Correctness If w the computation of step 3, M accepts and in step 2, the

= L), so in step 3,

Construction Def Is this how we proved that the class of regular languages is closed under reversal?

A. Yes.

B. No – but we could modify our earlier proof to make a copy of w^R and then run the

DFA on it.

C. No – and this strategy won't work for automata.

D. I don't know.

What is the language of CFG

with rules

$$S \rightarrow aSb \mid bY \mid Ya$$

 $Y \rightarrow bY \mid Ya \mid \varepsilon$

(Using) Pumping Lemma

Theorem: $L = \{w \ w^R \mid w \text{ is in } \{0,1\}^* \} \text{ is not regular.}$

Proof (by contradiction): Assume, towards a contradiction, that L is regular. Then by the Pumping Lemma, there is a pumping length, p, for L. Choose s to be the string . The Pumping Lemma guarantees that s can be divided into parts s=xyz such that |xy| ≤p, |y|>0, and for any i≥0, xyⁱz is in L. But, if we let i=____, we get the string which is not in L, a contradiction. Thus L is not regular.

(Using) Pu (Using) Pu

Proof (by contra D. More than one of the above.

that L is regular. E. I don't know.

pumping length,

. The Pumping Lemma guarantees that s can be divided into parts s=xyz such that |xy| ≤p, |y|>0, and for any i≥0, xyⁱz is in L. But, if we let i=___, we get the string which is not in L, a contradiction. Thus L is not regular.

P and NP

P: Languages decidable in polynomial time on deterministic Turing machines.

e.g. PATH, Simple arithmetic, CFL's, etc.

NP: Languages decidable in polynomial time on nondeterministic Turing machines.

e.g. TSP, SAT, CLIQUE, etc.

Know P⊆NP and if an NP-complete problem is in P, then P=NP.

