
CSE 105 
THEORY OF COMPUTATION

Winter 2018 review class



Today's learning goals
• Summarize key concepts, ideas, themes from CSE 105.

• Approach your final exam studying with confidence.

• Identify areas to focus on while studying for the exam.

Reminders

• CAPE and TA evaluations open

• Final exam Saturday March 17 11:30am-2:29pm

• Seat map & study guide on Piazza.  
• Discussion tomorrow will go over some of study guide.
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Model of computation

Formal definition?

Design? 

Describe language?

Class of languages

Closure properties?

Which languages not in class?

Finite automata 

-- DFA 

-- NFA

equiv to Regular expressions

Regular languages

To show not in class:

Pumping lemma

Push-down automata

CFGs

Context-free languages

TMs that always halt in polynomial time P

Nondeterministic TMs that halt in polynomial time NP

TMs that always halt aka Deciders Decidable languages

To show not in class: 

Diagonalization, reduction

Turing Machines (in general; may not halt) Recognizable languages



Roadmap of examples
A. Regular language design

B. Undecidability via reduction

C. Closure proofs

D. Determining the language of a PDA /CFG

E. Using Pumping Lemma



Given L, prove it is regular
Construction

Strategy 1: Construct DFA

Strategy 2: Construct NFA

Strategy 3: Construct regular expression

Proof of correctness

WTS 1 if w is in L then w is accepted by ….

WTS 2 if w is not in L then w is rejected by …



Ex: L= { w in {0,1}* | w has odd # of 1s OR starts with 0}

NFA:

Regular expression:



To show  a language is not regular, we can 

A. Show there is a CFG generating A.

B. Use the pumping lemma for regular 

languages.

C. Show A is undecidable.

D. More than one of the abve.

E. I don't know.



To show a language L is …
Recognizable

• Show there is a TM M with 

L(M) = L.

• Use closure properties.

Not recognizable

• Prove that L is not decidable 

and that the complement of 

L is recognizable.

• Use closure properties.



To show a language L is …
Decidable

• Show there is a TM D that 
always halts and L(D) = L.

• Find a decidable problem L' 
and show L reduces to L'

• Use closure properties.

Not decidable

• Use diagonalization

• Find an undecidable 
problem L' and show L' 
reduces to L.

• Use closure properties.



Undecidability via reduction
Theorem: Problem T is undecidable.

Proof Common pattern for many of these proofs.

Assume (towards a contradiction) that T is decidable by TM MT.  Goal: 
use MT to build a machine which will decide ATM.

Define MATM = "On input <M,w>:

1. Using the parameters M and w, construct a different TM X such that 
if M accepts w, then <X> is in T; if M does not accept w, then <X> is 
not in T.

2. Run MT on <X> and accept if MT accepts, reject if MT rejects."

Claim: MATM is decider and L(MATM) = ATM,   Then ATM is decidable, 
contradicting the known fact that ATM is undecidable.



T = { <M> | M is TM and |L(M)| = 1}
Theorem: Problem T is undecidable.

Proof

Assume (towards a contradiction) that T is decidable by TM MT.  
Goal: use MT to build a machine which will decide ATM.

Define MATM = "On input <M,w>:

1. Using the parameters M and w, construct a different TM X 
such that if M accepts w, then <X> is in T; if M does not 
accept w, then <X> is not in T.

2. Run MT on <X> and accept if accepts, reject if rejects.

Claim: MATM is decider and L(MATM) = ATM,   Then ATM is 
decidable, contradicting the known fact that ATM is undecidable.





Undecidability via reduction
Theorem: Problem T is undecidable.

Proof Common pattern for many of these proofs.

Assume (towards a contradiction) that T is decidable by TM MT.  
Goal: use MT to build a machine which will decide ATM.

Define MATM = "On input <M,w>:

1. Using the parameters M and w, construct a different TM X 
such that if M accepts w, then <X> is in T; if M does not 
accept w, then <X> is not in T.

2. Run MT on <X> and accept if accepts, reject if rejects.

Claim: MATM is decider and L(MATM) = ATM,   Then ATM is 
decidable, contradicting the known fact that ATM is undecidable.

In reduction proofs,

A. We always need to build a new TM X.

B. The auxiliary machine X must be run as 

part of our algorithm.

C. The auxiliary machine X runs only on w.

D. None of the above.

E. I don't know.



Countable and uncountable
Countable

• Find bijection with N

• Find a countable superset

Examples

Any language over Σ

Set of all regular languages

Set of rational numbers

Set of integers

Uncountable

• Diagonalization

• Find an uncountable subset

Examples

Set of all subsets of Σ*

Set of infinite binary sequences

Set of real numbers

[0,1]



Closure properties
Regular 

Languages

CFL Decidable 

Languages

Recognizable 

Languages

Union ✔ ✔ ✔ ✔

Intersection ✔ ✗ ✔ ✔

Complement ✔ ✗ ✔ ✗

Star ✔ ✔ ✔ ✔

Concatenation ✔ ✔ ✔ ✔



Proving closure
Goal: "The class of ____ languages is closed under _____"

In other words Given a language in specific class, is the 

result of applying the operation _____ to this language still 

guaranteed to be in the class?



Proving closure
Given: What does it mean for L to be in class?

e.g. L a regular language, so given a DFA ML = (QL, ΣL, 
δL,qL,FL)

with L(ML) = L. Name each of the pieces!

WTS: The result of applying the operation to L is still in this class.

Construction: Build a machine that recognizes the result of applying 
the operation to L.  Start with description in English!

e.g. Let M = (Q, Σ, δ, q0, F) where Q=… Σ=… δ=… q0=…F=..

M could be DFA or NFA

Correctness: Prove L(M) = result of applying operation to L

WTS1 if w is in set then w is accepted by M

WTS2 if w is not in the set then w rejected by M.



Claim: The class of recognizable languages is closed 

under concatenation

Given

WTS

Construction

Correctness



Claim: The class of recognizable languages is closed 

under concatenation
Given Two recognizable languages A,B and TMs that recognize 

them: MA with L(MA) = A and MB with L(MB) = B.

WTS The language AB is recognizable.

Construction Define the TM M as "On input w,

1. Nondeterministically split w into w = xy.

2. Simulate running MA on x.  If rejects, reject; if accepts go to 3.

3. Simulate running MB on y.  If rejects, reject; if accepts, accept."

Correctness



Construction Define the TM M as "On input w,

1. Nondeterministically split w into w = xy.

2. Simulate running MA on x.  If rejects, reject; if accepts go to 3.

3. Simulate running MB on y.  If rejects, reject; if accepts, accept.

Correctness Claim that w is in AB iff w is in L(M).

Part 1: Assume w is in AB.  Then there are strings x,y such that w = 

xy and x is in A, y is in B.  Running M on w, one of the 

nondeterministic ways we split w will be into these x,y.  In step 2, the 

computation of MA on x will halt and accept (because L(MA) = A) so 

we go to step 3.  In that step, the computation of MB on y will halt 

and accept (because L(MB) = B so M accepts w.



Construction Define the TM M as "On input w,

1. Nondeterministically split w into w = xy.

2. Simulate running MA on x.  If rejects, reject; if accepts go to 3.

3. Simulate running MB on y.  If rejects, reject; if accepts, accept.

Correctness Claim that w is in AB iff w is in L(M).

Part 2: Assume w is not in AB.  Then there are no strings x,y such that w = 
xy and x is in A, y is in B.  In other words, for each way of splitting w into xy, 
at least one of the following is true: MA running on x will reject or loop, MB
running on y will reject or loop.  Tracing the computation of M on w, in each 
one of the nondeterministic computation paths, there is some split w=xy.  
For each of these splits, in step 2, the computation of MA on x either loops 
(in which case M loops on w, so w is not in L(M)) or rejects (in which case 
M rejects w) or accepts (in which case M goes to step 3).  If the 
computation of M enters step 3, this means that x is in L(MA) so by our 
assumption, y is not in L(MB) so MB on y must either loop or reject. In either 
case, M rejects.  Thus w is not in L(M).



Proving closure
Given: What does it mean for L to be in class?

e.g. L a regular language, so given a DFA ML = (QL, ΣL, 
δL,qL,FL)

with L(ML) = L. Name each of the pieces!

WTS: The result of applying the operation to L is still in this class.

Construction: Build a machine that recognizes the result of applying 
the operation to L.  Start with description in English!

e.g. Let M = (Q, Σ, δ, q0, F) where Q=… Σ=… δ=… q0=…F=..

M could be DFA or NFA

Correctness: Prove L(M) = result of applying operation to L

WTS1 if w is in set then w is accepted by M

WTS2 if w is not in the set then w rejected by M.

To prove the class of recognizable languages 

is closed under _____ the constructions may 

involve building a

A. Two-tape Turing machine.

B. Nondeterministic decider.

C. Enumerator.

D. All of the above.

E. I don't know.



Claim: The class of decidable languages is closed 

under reversal

Given

WTS

Construction

Correctness



Claim: The class of decidable languages is closed 

under reversal
Given A decidable language L, with a decider TM D: L(D)=L 

WTS There is a decider that decides LR = {w | wR is in L}

Construction Define the TM M as "On input w:

1. Make a copy of w in reverse.

2. Simulate running D on this copy.

3. If D accepts, accept. If D rejects, reject.

Correctness If w is in LR then in step 1, M builds wR and in step 2, 
the computation of D on wR will accept (because L(D) = L), so in 
step 3, M accepts w.  If w is not in LR then in step 1, M builds wR

and in step 2, the computation of D on wR will rejept (because L(D) 
= L), so in step 3, M rejects w.



Claim: The class of decidable languages is closed 

under reversal
Given A decidable language L, with a decider TM D: L(D)=L 

WTS There is a decider that decides LR = {w | wR is in L}

Construction Define the TM M as "On input w:

1. Make a copy of w in reverse.

2. Simulate running D on this copy.

3. If D accepts, accept. If D rejects, reject.

Correctness If w is in LR then in step 1, M builds wR and in step 2, 
the computation of D on wR will accept (because L(D) = L), so in 
step 3, M accepts w.  If w is not in LR then in step 1, M builds wR

and in step 2, the computation of D on wR will rejept (because L(D) 
= L), so in step 3, M rejects w.

Is this how we proved that the class of regular 

languages is closed under reversal?

A. Yes.

B. No – but we could modify our earlier proof 

to make a copy of wR and then run the 

DFA on it.

C. No – and this strategy won't work for 

automata.

D. I don't know.



What is the language of this PDA?

A. {w | # of b's in w ≥ # of a's in w}

B. {w | w = anbn+1 for some n≥0}

C. {w | w = anbn+2 for some n≥0}

D. {w | w = anb2n for some n≥0}

E. {w | w = 0anb2n0 for some n≥0}



What is the language of CFG
with rules

S  aSb | bY | Ya

Y  bY | Ya | ε



(Using) Pumping Lemma
Theorem: L = {w wR | w is in {0,1}* } is not regular.

Proof (by contradiction): Assume, towards a contradiction, 

that L is regular.  Then by the Pumping Lemma, there is a 

pumping length, p, for L.  Choose s to be the string 

________.  The Pumping Lemma guarantees that s can be 

divided into parts s=xyz such that |xy| ≤p, |y|>0, and for any 

i≥0, xyiz is in L.  But, if we let i=____, we get the string 

______ which is not in L, a contradiction.  Thus L is not 

regular.



(Using) Pumping Lemma
Theorem: L = {w wR | w is in {0,1}* } is not regular.

Proof (by contradiction): Assume, towards a contradiction, 

that L is regular.  Then by the Pumping Lemma, there is a 

pumping length, p, for L.  Choose s to be the string 

________.  The Pumping Lemma guarantees that s can be 

divided into parts s=xyz such that |xy| ≤p, |y|>0, and for any 

i≥0, xyiz is in L.  But, if we let i=____, we get the string 

______ which is not in L, a contradiction.  Thus L is not 

regular.

A. s = 000000111111, i=6

B. s=0p0p, i=2

C. s=0p110p, i=2

D. More than one of the above.

E. I don't know.



P and NP
P: Languages decidable in polynomial time on deterministic 
Turing machines.

e.g. PATH, Simple arithmetic, CFL's, etc.

NP: Languages decidable in polynomial time on 
nondeterministic Turing machines.

e.g. TSP, SAT, CLIQUE, etc.

Know PNP and 

if an NP-complete problem is in P, then P=NP.
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