CSE 105 THEORY OF COMPUTATION

"Winter" 2018

http://cseweb.ucsd.edu/classes/wi18/cse105-ab/

Today's learning goals Sipser Ch 7

- Distinguish between computability and complexity
- Articulate motivation questions of complexity

- Section 7.1: time complexity, asymptotic upper bounds.
- Section 7.2: polynomial time, P
- Section 7.3: NP, polynomial verifiers, nondeterministic machines.

Complexity theory

Chapter 7

In the "real world", computers (and Turing machines) don't have infinite tape, and we can't afford to wait unboundedly long for an answer.

"Decidable" isn't good enough – we want "Efficiently decidable"

Not just decidable ...

 For a given algorithm working on a given input, how long do we need to wait for an answer? How does the running time depend on the input in the worst-case? averagecase? Expect to have to spend more time on larger inputs.

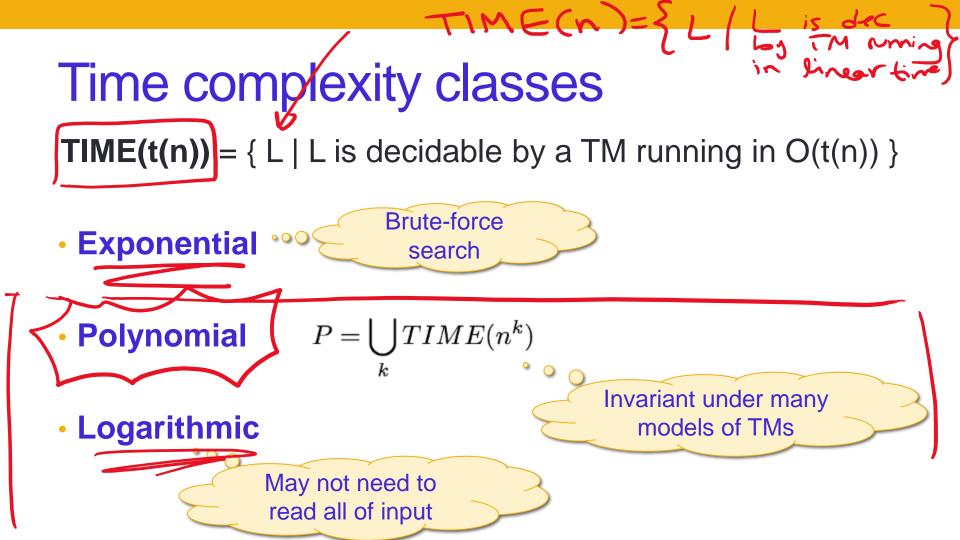
Measuring time

 For a given algorithm working on a given input, how long do we need to wait for an answer? Count steps! How does the running time depend on the input in the worstcase? average-case? Big-O

applications of transition

Can we detect problems that are **efficiently solvable**?

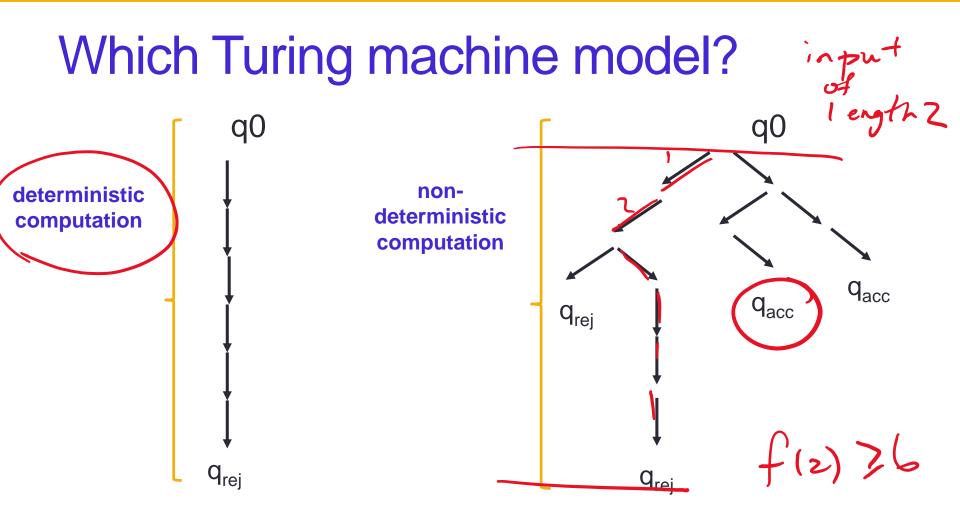
Time complexity For M a deterministic decider, its running time or time complexity is the function f: N given by f(n) = maximum number of steps M takes before halting,over all inputs of length n. Plus, instead of calculating precisely, worst-case analysis estimate f(n) by using big-O notation.



The class P

Why is it okay to group all polynomial running times?

- Contains all the "feasibly solvable" problems.
- Invariant for all the "usual" deterministic TM models
 - multitape machines (Theorem 7.8)
 - multi-write



Time complexity

For M a deterministic decider, its **running time** or **time complexity** is the function f: $N \rightarrow R^+$ given by f(n) = maximum number of steps M takes before halting,

over all inputs of length n.

For M a <u>nondeterministic decider</u>, its running time or time complexity is the function f: $N \rightarrow R^+$ given by f(n) = maximum number of steps M takes before halting onany branch of its computation, over all inputs of length n. Time complexity classes **DTIME (t(n))** = { L | L is decidable by O(t(n)) deterministic, single-tape TM } **NTIME (t(n))** = { L | L is decidable by O(t(n)) nondeterministic, single-tape TM } Is $DTIME(n^2)$ is a subset of $DTIME(n^3)$? Yes No C. Not enough information to decide D. I don't know

Time complexity classes DTIME (t(n)) = { L | L is decidable by O(t(n)) deterministic, single-tape TM }

NTIME (t(n)) = { L | L is decidable by O(t(n))

if $L \in NTIME(fGi)$ then $L \in DTIME(2^{fGi})$ nondeterministic, single-tape TM }

Is DTIME(n²) is a subset of NTIME(n²)?

- A Yes
- B. No
- C. Not enough information to decide
- D. I don't know

Time complexity classes DTIME (t(n)) = { L | L is decidable by O(t(n)) deterministic, single-tape TM }

NTIME (t(n)) = { L | L is decidable by O(t(n))

nondeterministic, single-tape TM }

Is NTIME(n²) is a subset of DTIME(n²)?

A. Yes
B. No
C. Not enough information to decide
D. I don't know

Pvs. NP Millenium Problem \$1000000

"Feasible" i.e. P

$$P = \bigcup_k TIME(n^k)$$

- Can't use nondeterminism
- Can use multiple tapes

Often need to be "more clever" than naïve / brute force approach

Examples

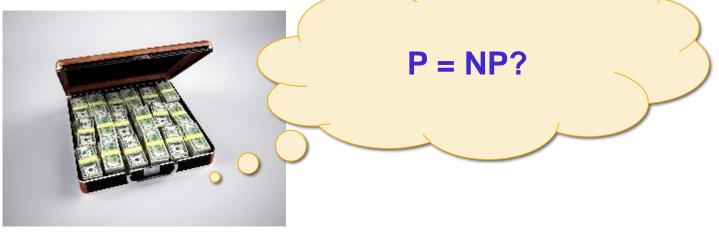
PATH = {<G,s,t> | G is digraph with n nodes there is path from s to t} Use breadth first search to show in P

RELPRIME = { <x,y> | x and y are relatively prime integers} Use Euclidean Algorithm to show in P

L(G) = {w | w is generated by G} where G is any CFG Use Dynamic Programming to show in P

"Verifiable" i.e. NP

- Can be **decided** by a **nondeterministic** TM in polynomial time
- Best known deterministic solution is brute-force
- Solution can be verified by a deterministic TM in polynomial time



Examples in NP

Solution can be *verified* by a deterministic TM in polynomial time

HAMPATH = $\langle G, s, t \rangle$ G is digraph with n nodes there is path from s to t that goes through *every* node exactly once} VERTEX-COVER = { $\langle G, k \rangle$ | G is an undirected graph with n nodes that has a k-node vertex cover}

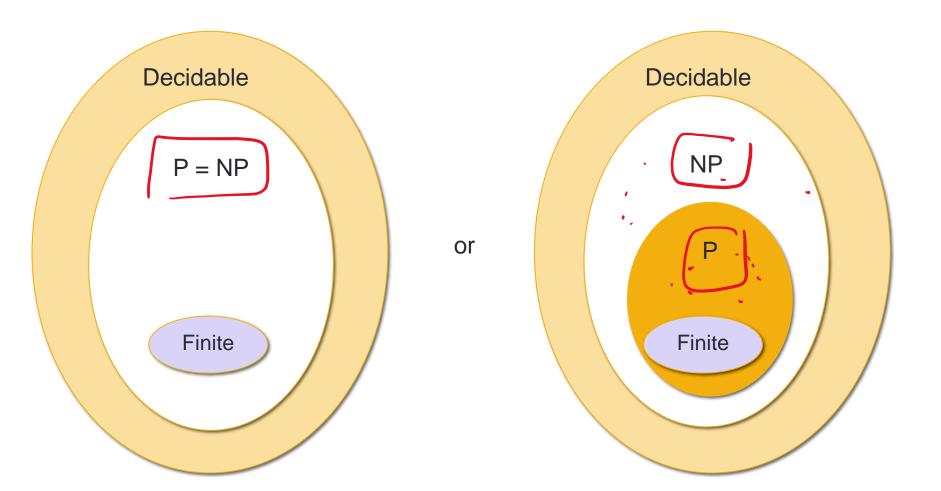
CLIQUE = { <G,k> | G is an undirected graph with n nodes that has a k-clique}

SAT = $\{ \langle X \rangle | X \text{ is a satisfiable Boolean formula with n variables} \}$

Examples in NP

Claim: HAMPATH is in NP

Pf: Build nondeterministic decider "On input < G, s,t> 1. Nondeterministically field a permutation of vertices of G that starts w/s i ends w/t. 2. Check consecutive vertices in list are adj. 17 so, accept



P vs. NP

Problems in P	Problems in NP
(Membership in any) CFL	Any problem in P
PATH	HAMPATH
E _{DFA}	CLIQUE
EQ _{DFA}	VERTEX-COVER
Addition, multiplication of integers	TSP
•••	SAT

Pre-class reading skim Chapter 7