
CSE 105
THEORY OF COMPUTATION

"Winter" 2018

http://cseweb.ucsd.edu/classes/wi18/cse105-ab/

Today's learning goals Sipser Ch 7

• Distinguish between computability and complexity

• Articulate motivation questions of complexity

• Section 7.1: time complexity, asymptotic upper bounds.

• Section 7.2: polynomial time, P

• Section 7.3: NP, polynomial verifiers, nondeterministic

machines.

Complexity theory Chapter 7

In the "real world", computers (and Turing machines) don't

have infinite tape, and we can't afford to wait unboundedly

long for an answer.

"Decidable" isn't good enough – we want "Efficiently

decidable"

Not just decidable …
• For a given algorithm working on a given input, how long

do we need to wait for an answer? How does the running

time depend on the input in the worst-case? average-

case? Expect to have to spend more time on larger

inputs.

Measuring time
• For a given algorithm working on a given input, how long

do we need to wait for an answer? Count steps! How

does the running time depend on the input in the worst-

case? average-case? Big-O

Can we detect problems that are efficiently solvable?

Time complexity
For M a deterministic decider,

its running time or time complexity is the function

f: N  R+ given by

f(n) = maximum number of steps M takes before halting,

over all inputs of length n.

worst-case analysis

Plus, instead of

calculating precisely,

estimate f(n) by using

big-O notation.

Time complexity classes
TIME(t(n)) = { L | L is decidable by a TM running in O(t(n)) }

• Exponential

• Polynomial

• Logarithmic

May not need to

read all of input

Invariant under many

models of TMs

Brute-force

search

The class P
Why is it okay to group all polynomial running times?

• Contains all the "feasibly solvable" problems.

• Invariant for all the "usual" deterministic TM models

• multitape machines (Theorem 7.8)

• multi-write

Which Turing machine model?

q0 q0

deterministic

computation

qrej

qacc

qrej

qrej

qacc

non-

deterministic

computation

Time complexity
For M a deterministic decider, its running time or time
complexity is the function f: N  R+ given by

f(n) = maximum number of steps M takes before halting,

over all inputs of length n.

For M a nondeterministic decider, its running time or
time complexity is the function f: N  R+ given by

f(n) = maximum number of steps M takes before halting on
any branch of its computation, over all inputs of length n.

Time complexity classes
DTIME (t(n)) = { L | L is decidable by O(t(n))

deterministic, single-tape TM }

NTIME (t(n)) = { L | L is decidable by O(t(n))

nondeterministic, single-tape TM }

Is DTIME(n2) is a subset of DTIME(n3)?

A. Yes

B. No

C. Not enough information to decide

D. I don't know

Time complexity classes
DTIME (t(n)) = { L | L is decidable by O(t(n))

deterministic, single-tape TM }

NTIME (t(n)) = { L | L is decidable by O(t(n))

nondeterministic, single-tape TM }

Is DTIME(n2) is a subset of NTIME(n2)?

A. Yes

B. No

C. Not enough information to decide

D. I don't know

Time complexity classes
DTIME (t(n)) = { L | L is decidable by O(t(n))

deterministic, single-tape TM }

NTIME (t(n)) = { L | L is decidable by O(t(n))

nondeterministic, single-tape TM }

Is NTIME(n2) is a subset of DTIME(n2)?

A. Yes

B. No

C. Not enough information to decide

D. I don't know

P vs. NP

"Feasible" i.e. P
• Can't use nondeterminism

• Can use multiple tapes

Often need to be "more clever" than naïve / brute force approach

Examples

PATH = {<G,s,t> | G is digraph with n nodes there is path from s to t}

Use breadth first search to show in P

RELPRIME = { <x,y> | x and y are relatively prime integers}

Use Euclidean Algorithm to show in P

L(G) = {w | w is generated by G} where G is any CFG

Use Dynamic Programming to show in P

"Verifiable" i.e. NP
• Can be decided by a nondeterministic TM in polynomial time

• Best known deterministic solution is brute-force

• Solution can be verified by a deterministic TM in polynomial

time

P = NP?

Examples in NP
Solution can be verified by a deterministic TM in polynomial time

HAMPATH = {<G,s,t> | G is digraph with n nodes there is path
from s to t that goes through every node exactly once}

VERTEX-COVER = { <G,k> | G is an undirected graph with n
nodes that has a k-node vertex cover}

CLIQUE = { <G,k> | G is an undirected graph with n nodes that
has a k-clique}

SAT = { < X > | X is a satisfiable Boolean formula with n
variables}

Examples in NP
Claim: HAMPATH is in NP

Decidable

or

NP

P

Decidable

Finite

P = NP

Finite

P vs. NP

Problems in P Problems in NP

(Membership in any) CFL Any problem in P

PATH HAMPATH

EDFA CLIQUE

EQDFA VERTEX-COVER

Addition, multiplication of integers TSP

… SAT

…

Next time
Pre-class reading skim Chapter 7

