Today's learning goals

Sipser Ch 5.1

• Define and explain core examples of computational problems, include A^{**}, E^{**}, EQ^{**}, $HALT_{TM}$ (for ** either DFA or TM)
• Explain what it means for one problem to reduce to another
• Use reductions to prove undecidability (or decidability)

Announcements:
Individ HW 6 due tomorrow
Group HW 6 due Saturday
A_{TM}

$A_{TM} = \{ <M,w> \mid M \text{ is a TM and } w \text{ is in } L(M) \}$

Define the TM $N = "\text{On input } <M,w>:"

1. Simulate M on w.
2. If M accepts, accept. If M rejects, reject."

N is a Turing machine that recognizes A_{TM}.

No Turing machine decides A_{TM}.
A_{TM}

- Recognizable
- Not decidable

Fact (from discussion section): A language is decidable iff it and its complement are both recognizable.

Corollary 4.23: The complement of A_{TM} is **unrecognizable**.

Observation: Complement of decidable set is also decidable.
<table>
<thead>
<tr>
<th>Decidable</th>
<th>Recognizable (and not decidable)</th>
<th>Co-recognizable (and not decidable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{DFA}</td>
<td>A_{TM}</td>
<td>A_{TM}^c</td>
</tr>
<tr>
<td>E_{DFA}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQ_{DFA}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Give algorithm!

Diagonalization
Idea

If problem X is no harder than problem Y
...and if Y is easy
...then X must also be easy
If problem X is no harder than problem Y
...and if X is hard
...then Y must also be hard
Idea

If problem X is no harder than problem Y
...and if Y is \textit{decidable}
...then X must also be \textit{decidable}

If problem X is no harder than problem Y
...and if X is \textit{undecidable}
...then Y must also be \textit{undecidable}
Idea

If problem X is no harder than problem Y
...and if Y is **decidable**
...then X must also be **decidable**

If problem X is no harder than problem Y
...and if X is **undecidable**
...then Y must also be **undecidable**

"Problem X is no harder than problem Y" means
"Given information about Y, we could solve problem X".
The halting problem!

\[\text{HALT}_\text{TM} = \{ <M,w> | M \text{ is a TM and } M \text{ halts on input } w \} \]

\[A_{\text{TM}} = \{ <M,w> | M \text{ is a TM and } w \text{ is in } L(M) \} \]

How is \text{HALT}_\text{TM} related to \text{A}_{\text{TM}}?

A. They're the same set.
B. \text{HALT}_\text{TM} is a subset of \text{A}_{\text{TM}}
C. \text{A}_{\text{TM}} is a subset of \text{HALT}_\text{TM}
D. They have the same type of elements but no other relation.
E. I don't know.
The halting problem!

\[\text{HALT}_{\text{TM}} = \{ <M,w> \mid M \text{ is a TM and } M \text{ halts on input } w \} \]

\[\text{A}_{\text{TM}} = \{ <M,w> \mid M \text{ is a TM and } w \text{ is in } L(M) \} \]

But subset inclusion doesn't determine difficulty!

\[\Sigma^* \text{ is "easier" than its subsets} \]
Claim: A_{TM} is no harder than $HALT_{TM}$

In other words: we could use $HALT_{TM}$ to solve A_{TM}

Given: Turing machine M, string w, magic genie for $HALT_{TM}$

Goal: Accept if w is in $L(M)$; Reject if w is not in $L(M)$.
Claim: A_{TM} is no harder than $HALT_{TM}$

In other words: we could use $HALT_{TM}$ to solve A_{TM}

Given: Turing machine M, string w, magic genie for $HALT_{TM}$

We can ask the magic genie "does a certain TM halt on certain input string?" Genie will **magically** give correct yes/no answer.

We can ask the genie as many of these questions as we'd like, about *any* TM and *any* string.

Goal: Accept if w is in $L(M)$; Reject if w is not in $L(M)$.
Claim: A_{TM} is no harder than $HALT_{TM}$

In other words: we could use $HALT_{TM}$ to solve A_{TM}

Given: Turing machine M, string w, magic genie for $HALT_{TM}$

"On input $<M, w>$

1. Ask Genie about M and w.
2. If Genie says no, then reject; if Genie says yes, run M on w.
 a. If this computation accepts, accept.
 b. If this computation rejects, reject."

Goal: Accept if w is in $L(M)$; Reject if w is not in $L(M)$
Proof of correctness: Let M be a TM, w a string

Case (1) $w \in L(M)$. We show that $TM_{Gen\text{e}I\text{m}}$ accepts on input $\langle M, w \rangle$.

In step 1, alg asks $Gen\text{e}i$ about $\langle M, w \rangle$ and it says "yes" because $w \in L(M)$ so M halts on w. Then in step 2, M runs on w, and will accept by Case assumption so in 2a $Gen\text{e}i_{TM\text{e}M}$ accepts.

Case (2) $w \notin L(M)$. Similar, with subcases for $TM_{Gen\text{e}I\text{m}}$ rejects.
Reduction

"Problem X reduces to problem Y" means
"Problem X is no harder than problem Y" means
"Given a genie for problem Y, we could solve problem X" means
"Given a solution for Y, we have a solution for X"

In the previous example, we used a genie for \(\text{HALT}_{TM} \) to solve \(\text{A}_{TM} \). Thus, \(\text{A}_{TM} \) reduces to \(\text{HALT}_{TM} \).

Which is not true?
A. \(\text{HALT}_{TM} \) reduces to \(\text{A}_{TM} \)
B. \(\Sigma^* \) reduces to \(\text{A}_{TM} \)
C. \(\text{A}_{TM} \) reduces to \(\emptyset \) (the empty set)
D. More than one of the above
E. None of the above
A_Tm reduces to $HALT_{Tm}$

\exists

$HALT_{Tm}$ reduces to A_Tm

(see podcast for proof on board)
Using reduction to prove undecidability

Claim: Problem X is undecidable

Proof strategy: Show that A_{TM} reduces to X.

Alternate Proof strategy: Show that $HALT_{TM}$ reduces to X.

etc.

In each of these, have access to Genie which can answer questions about X.
Scooping the Loop Snooper
A proof that the Halting Problem is undecidable
Geoffrey K. Pullum
(http://www.lel.ed.ac.uk/~gpullum/loopsnoop.html)

No general procedure for bug checks will do.
Now, I won’t just assert that, I’ll prove it to you.
I will prove that although you might work till you drop,
you cannot tell if computation will stop.

For imagine we have a procedure called P
that for specified input permits you to see
whether specified source code, with all of its faults,
defines a routine that eventually halts.

You feed in your program, with suitable data,
and P gets to work, and a little while later
(in finite compute time) correctly infers
whether infinite looping behavior occurs.

If there will be no looping, then P prints out ‘Good.’
That means work on this input will halt, as it should.
But if it detects an unstoppable loop,
then P reports ‘Bad!’ — which means you’re in the soup.

Well, the truth is that P cannot possibly be,
because if you wrote it and gave it to me,
I could use it to set up a logical bind
that would shatter your reason and scramble your mind.

Here’s the trick that I’ll use — and it’s simple to do.
I’ll define a procedure, which I will call Q,
that will use P’s predictions of halting success
to stir up a terrible logical mess.

For a specified program, say A, one supplies,
the first step of this program called Q I devise
is to find out from P what’s the right thing to say
of the looping behavior of A run on A.

If P’s answer is ‘Bad!,’ Q will suddenly stop.
But otherwise, Q will go back to the top,
and start off again, looping endlessly back,
till the universe dies and turns frozen and black.

And this program called Q wouldn’t stay on the shelf;
I would ask it to forecast its run on itself.
When it reads its own source code, just what will it do?
What’s the looping behavior of Q run on Q?

If P warns of infinite loops, Q will quit;
yet P is supposed to speak truly of it!
And if Q’s going to quit, then P should say ‘Good.’
Which makes Q start to loop! (P denied that it would.)

No matter how P might perform, Q will scoop it:
Q uses P’s output to make P look stupid.
Whatever P says, it cannot predict Q:
P is right when it’s wrong, and is false when it’s true!

I’ve created a paradox, neat as can be —
and simply by using your putative P.
When you posited P you stepped into a snare;
Your assumption has led you right into my lair.

So where can this argument possibly go?
I don’t have to tell you; I’m sure you must know.
A reductio: There cannot possibly be
a procedure that acts like the mythical P.

You can never find general mechanical means
for predicting the acts of computing machines;
it’s something that cannot be done. So we users
must find our own bugs. Our computers are losers!
Next time

Pre-class reading for Wednesday Theorem 5.2