CSE 105
THEORY OF COMPUTATION

"Winter" 2018

http://cseweb.ucsd.edu/classes/wi18/cse105-ab/

Reminders
- Review session Exam 2 next week
- Practice Qs on website
- Exam 2 on Friday, seats on Piazza today
Today's learning goals

• Explain what it means for a problem to be decidable.
• Justify the use of encoding.
• Give examples of decidable problems.
Computational problems

A computational problem is **decidable** iff the language encoding the problem instances is decidable.

We won't specify the encoding.

To prove decidable, define TM $M = "On input <…>, 1.
2. … "$

Show (1) $L(M) = …$ and (2) M is a decider.
Computational problems over Σ

A_{DFA} "Is a given string accepted by a given DFA?"
\[\{ <B, w> \mid B \text{ is a DFA, } w \text{ in } \Sigma^*, \text{ and } w \text{ is in } L(B) \} \]

E_{DFA} "Is the language of a DFA empty?"
\[\{ <A> \mid A \text{ is a DFA over } \Sigma, L(A) \text{ is empty} \} \]

EQ_{DFA} "Are the languages of two given DFAs equal?"
\[\{ <A, B> \mid A \text{ and } B \text{ are DFA over } \Sigma, L(A) = L(B) \} \]
From last week

\[L(M_1) = A_{DFA} \]

\[L(M_2) = E_{DFA} \]

\(M_1 \) = "On input \(<B,w> \), where \(B \) is a DFA and \(w \) is a string:

1. Simulate \(B \) on input \(w \) (by keeping track of states in \(B \), transition function of \(B \), etc.)
2. If the simulations ends in an accept state of \(B \), accept. If it ends in a non-accept state of \(B \), reject."

\(M_2 \) = "On input \(<A> \), where \(A \) is a DFA:

1. Mark the start state of \(A \).
2. Repeat until no new states get marked:
 i. Loop over states of \(A \) and mark any unmarked state that has an incoming edge from a marked state.
3. If no final state of \(A \) is marked, accept; otherwise, reject."
Non-emptiness?

E' \text{\text{_DFA}} \ "Is the language of a DFA non-empty?"

\[\{ <A> | A \text{ is DFA, } L(A) \neq \emptyset \} \]

Is this problem decidable?

A. Yes, using M_3 in the handout.
B. Yes, using M_4 in the handout.
C. Yes, both M_3 and M_4 work.
D. Yes, but not using the machines in the handout.
E. No.
Challenge: Tweak M_4 that gives a new machine which does not decide L_3.

Hint: Use Pumping Lemma to bound search.
Proving decidability

Claim: \(\text{EQ}_{\text{DFA}} \) is decidable

Proof: WTS that \(\{ <A, B> | A, B \text{ are DFA over } \Sigma, L(A) = L(B) \} \) is decidable. Idea: give high-level description

Step 1: construction

Will we be able to simulate \(A \) and \(B \)?

What does set equality mean?

Can we use our previous work?

\[
L(A) = L(B) \iff \emptyset
\]
Proving decidability

Claim: \(\text{EQ}_{\text{DFA}} \) is decidable

Proof: WTS that \(\{ <A, B> | A, B \text{ are DFA over } \Sigma, L(A) = L(B) \} \) is decidable. Idea: give high-level description

Step 1: construction

\(X = Y \iff (X \cap Y^c) \cup (Y \cap X^c) = \emptyset \)
Proving decidability

Claim: EQ_{DFA} is decidable

Proof: WTS that $\{ <A, B> | A, B \text{ are DFA over } \Sigma, L(A) = L(B) \}$ is decidable. Idea: give high-level description

Step 1: construction

Very high-level:

Build new DFA recognizing symmetric difference of A, B. Check if this set is empty.
Proving decidability

Claim: EQ_{DFA} is decidable

Proof: WTS that $\{ <A, B> | A, B \text{ are DFA over } \Sigma, L(A) = L(B) \}$ is decidable. Idea: give high-level description

Step 1: construction

Define TM M_5 by: $M_5 = \text{"On input } <A,B> \text{ where } A,B \text{ DFAs:}\$

1. Construct a new DFA, D, from A,B using algorithms for complementing, taking unions of regular languages such that $L(D) = \text{symmetric difference of } A \text{ and } B$. \\
2. Run machine M_2 on $<D>$. \\
3. If it accepts, accept; if it rejects, reject. \\
 i.e. $L(D) = \emptyset$ \\
 i.e. $L(D) \neq \emptyset$
Proving decidability

Step 1: construction
Define TM M_5 by: $M_5 = "On input <A,B> where A,B DFAs$

1. Construct a new DFA, D, from A,B using algorithms for complementing, taking unions of regular languages such that $L(D) = \text{symmetric difference of } A \text{ and } B.$
2. Run machine M_2 on <D>.
3. If it accepts, accept; if it rejects, reject."

Step 2: correctness proof
WTS (1) $L(M_5) = \text{EQ}_{\text{DFA}}$ and (2) M_5 is a decider.
Goal if A, B DFA and $L(A) = L(B)$
then M_5 on $<A, B>$ accepts.

Goal if A, B DFA and $L(A) \neq L(B)$
then M_5 on $<A, B>$ (nats end) rejects.
Computational problems

Which of the following computational problems are decidable?

A. A_{NFA}
B. E_{NFA}
C. EQ_{NFA}
D. All of the above
E. None of the above
Computational problems

Compare:

A. $A_{REX} = A_{NFA} = A_{DFA}$, $E_{REX} = E_{NFA} = E_{DFA}$, $EQ_{REX} = EQ_{NFA} = EQ_{DFA}$
B. They're all decidable, some are equal and some not.
C. They're of different types so all are different.
D. None of the above
Techniques

- **Subroutines**: can use decision procedures of decidable problems as subroutines in other algorithms
 - A_{DFA}
 - E_{DFA}
 - EQ_{DFA}

- **Constructions**: can use algorithms for constructions as subroutines in other algorithms
 - Converting DFA to DFA recognizing complement (or Kleene star).
 - Converting two DFA/NFA to one recognizing union (or intersection, concatenation).
 - Converting NFA to equivalent DFA.
 - Converting regular expression to equivalent NFA.
 - Converting DFA to equivalent regular expression.

Sipser 4.1
Next time

• Are all computational problems decidable?

For Wednesday, pre-class reading: Section 4.3, page 207-209.