Today's learning goals

- Explain what it means for a problem to be decidable.
- Justify the use of encoding.
- Give examples of decidable problems.
Computational problems

A computational problem is **decidable** iff the language encoding the problem instances is decidable.

We won't specify the encoding.

To prove decidable, define TM M = "On input <…>,
1.
2. … "

Show (1) L(M) = … and (2) M is a decider.
Computational problems over Σ

A_{DFA}: "Is a given string accepted by a given DFA?"
{ $<B,w>$ | B is a DFA, w in Σ^*, and w is in $L(B)$ }

E_{DFA}: "Is the language of a DFA empty?"
{ $<A>$ | A is a DFA over Σ, $L(A)$ is empty }

EQ_{DFA}: "Are the languages of two given DFAs equal?"
{ $<A, B>$ | A and B are DFA over Σ, $L(A) = L(B)$ }
M₁ = "On input <B,w>, where B is a DFA and w is a string:
1. Simulate B on input w (by keeping track of states in B, transition function of B, etc.)
2. If the simulations ends in an accept state of B, accept. If it ends in a non-accept state of B, reject."

M₂ = "On input <A>, where A is a DFA:
1. Mark the start state of A.
2. Repeat until no new states get marked:
 i. Loop over states of A and mark any unmarked state that has an incoming edge from a marked state.
3. If no final state of A is marked, accept; otherwise, reject."
Non-emptiness?

"Is the language of a DFA non-empty?"

Is this problem decidable?

A. Yes, using M_3 in the handout.
B. Yes, using M_4 in the handout.
C. Yes, both M_3 and M_4 work.
D. Yes, but not using the machines in the handout.
E. No.
M_3 and M_4 both recognize E'_{DFA}.

M_3 is a decider.

M_4 is not a decider.
Proving decidability

Claim: EQ_{DFA} is decidable

Proof: WTS that $\{ <A, B> \mid A, B \text{ are DFA over } \Sigma, L(A) = L(B) \}$ is decidable. Idea: give high-level description

Step 1: construction

Will we be able to simulate A and B?

What does set equality mean?

Can we use our previous work?
Let c be a DFA that recognizes $(x \lor \overline{y}) \cup (\overline{x} \land y) = \emptyset \iff x = y$.
Proving decidability

Claim: EQ_{DFA} is decidable

Proof: WTS that \{ $\langle A, B \rangle \mid A, B$ are DFA over Σ, $L(A) = L(B)$ \} is decidable. Idea: give high-level description

Step 1: construction

Will we be able to simulate A and B?

What does set equality mean?

Can we use our previous work?

$X = Y \iff (X \cap Y^c) \cup (Y \cap X^c) = \emptyset$
Proving decidability

Claim: \(\text{EQ}_{\text{DFA}} \) is decidable

Proof: WTS that \(\{ <A, B> | A, B \text{ are DFA over } \Sigma, L(A) = L(B) \} \) is decidable. Idea: give high-level description

Step 1: construction

Very high-level:

Build new DFA recognizing symmetric difference of A, B. Check if this set is empty.

\[X = Y \iff ((X \cap Y^c) \cup (Y \cap X^c)) = \emptyset \]
Proving decidability

Claim: EQ_{DFA} is decidable

Proof: WTS that $\{ <A, B> | A, B \text{ are DFA over } \Sigma, L(A) = L(B) \}$ is decidable. Idea: give high-level description

Step 1: construction

Define TM M_5 by: $M_5 = \text{"On input } <A, B> \text{ where A,B DFAs:}\$
1. Construct a new DFA, D, from A,B using algorithms for complementing, taking unions of regular languages such that $L(D) = \text{symmetric difference of } A \text{ and } B$.
2. Run machine M_2 on $<D>$.
3. If it accepts, accept; if it rejects, reject."
Proving decidability

Step 1: construction
Define TM M_5 by: $M_5 = \text{"On input } <A,B> \text{ where } A,B \text{ DFAs}
1. Construct a new DFA, D, from A,B using algorithms for complementing, taking unions of regular languages such that $L(D) = \text{symmetric difference of } A \text{ and } B$.
2. Run machine M_2 on $<D>$.
3. If it accepts, accept; if it rejects, reject.

Step 2: correctness proof
WTS (1) $L(M_5) = EQ_{\text{DFA}}$ and (2) M_5 is a decider.
Proof: \(\text{1. } L(M_5) \subseteq \text{EQ}_{\text{DFA}} \). Let \(w \in L(M_5) \) then \(w = \langle A, B \rangle \) such that \(A \) and \(B \) are DFAs, and \(L(D) \) is empty when \(D \) recognizes \((L(A) \cap \overline{L(B)}) \cup (\overline{L(A)} \cap L(B)) \).

Symmetric difference of \(L(A) \), \(L(B) \) is empty

\[\iff (L(A) = L(B)) \]

\[\iff \langle A, B \rangle \in \text{EQ}_{\text{DFA}} \]

\[\implies \text{EQ}_{\text{DFA}} \subseteq L(M_5) \text{ exercise.} \]
Computational problems

Which of the following computational problems are decidable?

A. A_{NFA}
B. E_{NFA}
C. EQ_{NFA}
D. All of the above
E. None of the above
Computational problems

Compare:

A. $A_{\text{REX}} = A_{\text{NFA}} = A_{\text{DFA}}$, $E_{\text{REX}} = E_{\text{NFA}} = E_{\text{DFA}}$, $EQ_{\text{REX}} = EQ_{\text{NFA}} = EQ_{\text{DFA}}$

B. They're all decidable, some are equal and some not.

C. They're of different types so all are different.

D. None of the above

$E_{\text{DFA}} = \{ <A> \mid A \text{ is a DFA and } L(A) = \phi \}$

$E_{\text{REX}} = \{ <R> \mid R \text{ is a regular expression and } L(R) = \phi \}$
Techniques

Subroutines: can use decision procedures of decidable problems as subroutines in other algorithms

- A_{DFA}
- E_{DFA}
- EQ_{DFA}

Constructions: can use algorithms for constructions as subroutines in other algorithms

- Converting DFA to DFA recognizing complement (or Kleene star).
- Converting two DFA/NFA to one recognizing union (or intersection, concatenation).
- Converting NFA to equivalent DFA.
- Converting regular expression to equivalent NFA.
- Converting DFA to equivalent regular expression.
Next time

• Are all computational problems decidable?

For Wednesday, pre-class reading: Section 4.3, page 207-209.