Today's learning goals

• Explain what it means for a problem to be decidable.
• Justify the use of encoding.
• Give examples of decidable problems.
Computational problems

A computational problem is **decidable** iff the language encoding the problem instances is decidable.

We won't specify the encoding.

To prove decidable, define TM $M = \text{"On input } <\ldots>,$

1.
2. \ldots "

Show (1) $L(M) = \ldots$ and (2) M is a decider.
Computational problems over Σ

A_{DFA} "Is a given string accepted by a given DFA?"
\{ <B,w> | B is a DFA, w in Σ^*, and w is in L(B) \}

E_{DFA} "Is the language of a DFA empty?"
\{ <A> | A is a DFA over Σ, L(A) is empty \}

EQ_{DFA} "Are the languages of two given DFAs equal?"
\{ <A, B> | A and B are DFA over Σ, L(A) = L(B) \}
From last week

$M_1 = \text{"On input } \langle B, w \rangle \text{, where } B \text{ is a DFA and } w \text{ is a string:

1. Simulate } B \text{ on input } w \text{ (by keeping track of states in } B, \text{ transition function of } B, \text{ etc.)
2. If the simulations ends in an accept state of } B, \text{ accept. If it ends in a non-accept state of } B, \text{ reject. \"")}$

$M_2 = \text{"On input } \langle A \rangle \text{, where } A \text{ is a DFA:

1. Mark the start state of } A.
2. Repeat until no new states get marked:
 i. Loop over states of } A \text{ and mark any unmarked state that has an incoming edge from a marked state.
3. If no final state of } A \text{ is marked, } \text{ accept; otherwise, } \text{ reject."} $
Non-emptiness?

E'_{DFA} "Is the language of a DFA non-empty?"

Is this problem decidable?
A. Yes, using M_3 in the handout.
B. Yes, using M_4 in the handout.
C. Yes, both M_3 and M_4 work.
D. Yes, but not using the machines in the handout.
E. No.
Proving decidability

Claim: EQ_{DFA} is decidable

Proof: WTS that $\{ <A, B> \mid A, B \text{ are DFA over } \Sigma, L(A) = L(B) \}$ is decidable. Idea: give high-level description

Step 1: construction

Will we be able to simulate A and B?
What does set equality mean?
Can we use our previous work?
Proving decidability

Claim: EQ_{DFA} is decidable

Proof: WTS that \{ <A, B> | A, B are DFA over Σ, $L(A) = L(B)$ \} is decidable. **Idea:** give high-level description

Step 1: construction

$$X = Y \iff (X \cap Y^c) \cup (Y \cap X^c) = \emptyset$$

Will we be able to simulate?

What does set equality mean?

Can we use our previous work?
Proving decidability

Claim: E_{DFA} is decidable

Proof: WTS that \{ <A, B> | A, B are DFA over Σ, $L(A) = L(B)$ \} is decidable. **Idea:** give high-level description

Step 1: construction

Very high-level:

Build new DFA recognizing symmetric difference of A, B. Check if this set is empty.

\[X = Y \iff ((X \cap Y^c) \cup (Y \cap X^c)) = \emptyset \]
Proving decidability

Claim: EQ_{DFA} is decidable

Proof: WTS that $\{ <A, B> | A, B \text{ are DFA over } \Sigma, \text{ } L(A) = L(B) \}$ is decidable. Idea: give high-level description

Step 1: construction

Define TM M_5 by: $M_5 = "\text{On input } <A,B> \text{ where } A,B \text{ DFAs:}"

1. Construct a new DFA, D, from A,B using algorithms for complementing, taking unions of regular languages such that $L(D) = \text{symmetric difference of } A \text{ and } B$.
2. Run machine M_2 on $<D>$.
3. If it accepts, accept; if it rejects, reject."
Proving decidability

Step 1: construction
Define TM M_5 by: $M_5 = \text{"On input } <A,B> \text{ where } A,B \text{ DFAs}
1. Construct a new DFA, D, from A,B using algorithms for complementing, taking unions of regular languages such that $L(D) = \text{symmetric difference of } A \text{ and } B$.
2. Run machine M_2 on $<D>$.
3. If it accepts, accept; if it rejects, reject.

Step 2: correctness proof
WTS (1) $L(M_5) = EQ_{DFA}$ and (2) M_5 is a decider.
Computational problems

Which of the following computational problems are decidable?

A. A_{NFA}
B. E_{NFA}
C. EQ_{NFA}
D. All of the above
E. None of the above
Computational problems

Compare:

A. $A_{\text{REX}} = A_{\text{NFA}} = A_{\text{DFA}}, \quad E_{\text{REX}} = E_{\text{NFA}} = E_{\text{DFA}}, \quad \text{EQ}_{\text{REX}} = \text{EQ}_{\text{NFA}} = \text{EQ}_{\text{DFA}}$

B. They're all decidable, some are equal and some not.

C. They're of different types so all are different.

D. None of the above
Techniques

- **Subroutines**: can use decision procedures of decidable problems as subroutines in other algorithms
 - A_{DFA}
 - E_{DFA}
 - EQ_{DFA}

- **Constructions**: can use algorithms for constructions as subroutines in other algorithms
 - Converting DFA to DFA recognizing complement (or Kleene star).
 - Converting two DFA/NFA to one recognizing union (or intersection, concatenation).
 - Converting NFA to equivalent DFA.
 - Converting regular expression to equivalent NFA.
 - Converting DFA to equivalent regular expression.
Next time

• Are all computational problems decidable?

For Wednesday, pre-class reading: Section 4.3, page 207-209.