CSE 105 THEORY OF COMPUTATION

"Winter" 2018

http://cseweb.ucsd.edu/classes/wi18/cse105-ab/

Today's learning goals

Sipser Section 3.2

- Describe several variants of Turing machines and informally explain why they are equally expressive.
- State and use the Church-Turing thesis.

Describing TMs

Sipser p. 184-185

- Formal definition: set of states, input alphabet, tape alphabet, transition function, state state, accept state, reject state.
- Implementation-level definition: English prose to describe Turing machine head movements relative to contents of tape.
- High-level desciption: Description of algorithm, without implementation details of machine. As part of this description, can "call" and run another TM as a subroutine.

High-level description = Algorithm

- Wikipedia "self-contained step-by-step set of operations to be performed"
- CSE 20 textbook "An algorithm is a finite sequence of precise instructions for performing a computation or for solving a problem."

Church-Turing thesis

Each algorithm can be implemented by some Turing machine.

Variants of TMs

- Scratch work, copy input, …
- Parallel computation
- Printing vs. accepting
- More flexible transition function
 - Can "stay put" [×]
 - Can "get stuck"
 - Can "goto" cell on tape K
 - lots of examples in exercises to Cha

All these models are equally expressive!

Multiple tapes

Enumerators

Nondeterminism

Also: wildly different models • λ-calculus, Post canonical systems, URMs, etc.

"Equally expressive"

on

wthe

Model 1 is equally expressive as Model 2 iff

- every language recognized by some machine in Model 1 is recognizable by some machine in Model 2, and
- every language recognized by some machine in Model 2 is recognizable by some machine in Model 1.

Which of the following statements is true?

- ✓ NFAs and PDAs are equally expressive because they may both be nondeterministic.
- B. PDAs and Turing machines are equally expressive because they can both write (to a stack or the tape).
- C. NFAs and DFAs are equally expressive because they can be translated to one another.
- D. None of the above.

Turing machines that can stay

Transition function

 $Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R, S\}$

Sketch of proof of equivalence:

To allow for stay put instead of only left and right. Replace each stay put transition with two transitions: one that moves to the right and the second back to the left. *Sipser: 176*

Multitape TMs

Sipser p. 176

As part of construction of machine, declare some finite number of tapes that are available.

- Input given on tape 1, rest of the tapes start blank.
- Each tape has its own read/write head.

T

• Transition function $Q \times \Gamma^k \rightarrow Q \times \Gamma^k \times \{L, R, S\}^k$

Sketch of proof of equivalence:

To simulate multiple tapes with one tape: Use delimiter to keep tape contents separate, use special symbol to indicate location of each read/write head.

ዝ

Nondeterministic TMs

Sipser p. 178

At any point in the computation, machine may proceed according to several possibilities.

Transition function

 $Q \times \Gamma \rightarrow P(Q \times \Gamma \times \{L,R\})$

Sketch of proof of equivalence:

To simulate nondeterministic machine: Use 3 tapes to do breadth-first search of computation tree: "read-only" input tape, simulation tape, tape tracking nondeterministic braching.

Very different model: Enumerators Sipser p. 180

Produce language as output rather than recognize input

Computation proceeds according to transition function.

At any point, machine may "send" a string to printer.

L(E) = { w | E eventually, in finite time, prints w}

Enumerators

Which of the following is a high level description for an enumerator that enumerates the set {0}?

Theorem: A language L is Turing-recognizable iff some enumerator enumerates L.

2. Assume L is enumerated by some enumerator. WTS L is Turing-recognizable.

2. Assume the enumerator E enumerates L. WTS L is Turing-recognizable.

We'll use E in a subroutine for high-level description of Turing machine M that will recognize L.

Define M as follows: M = On input w,
1. Run E. For each string x printed by E
If x = w, accept. Otherwise, continue."

1. Assume L is Turing-recognizable. WTS some enumerator enumerates it.

Let M be a TM that recognizes L. We'll use M in a subroutine for highlevel description of enumerator E.

Idea: check each string in turn to see if it is in L = L(M).

1. Assume L is Turing-recognizable. WTS some enumerator enumerates it.

Let M be a TM that recognizes L. We'll use M in a subroutine for highlevel description of enumerator E.

Let s_1, s_2, \dots be a list of all strings in Σ^* in standard string order

- E = "Ignore any input. Repeat the following for i=1,2,3...
- 1. Run M for i steps on each input $s_1, ..., s_i$
- 2. If any of the i computations of M accepts, print out the accepted string."

Correctness?

	Suppose M is TM that recognizes L	Suppose D is TM that decides L	Suppose E is enumerator that enumerates L
If string w is in L then	Screek	r	
If string w is not in L then	re let or loop.		

For next time

GroupHW5 due Saturday, February 24

For Friday, pre-class reading: pp. 185 (middle)