
CSE 105
THEORY OF COMPUTATION

"Winter" 2018

http://cseweb.ucsd.edu/classes/wi18/cse105-ab/

http://cseweb.ucsd.edu/classes/wi18/cse105-ab/

Today's learning goals Sipser Section 3.2

• Describe several variants of Turing machines and

informally explain why they are equally expressive.

• State and use the Church-Turing thesis.

Describing TMs Sipser p. 184-185

• Formal definition: set of states, input alphabet, tape
alphabet, transition function, state state, accept state,
reject state.

• Implementation-level definition: English prose to
describe Turing machine head movements relative to
contents of tape.

• High-level desciption: Description of algorithm, without
implementation details of machine. As part of this
description, can "call" and run another TM as a
subroutine.

Context-free languages

Regular languages

Turing decidable languages

Turing recognizable languages

High-level description = Algorithm
• Wikipedia "self-contained step-by-step set of operations to

be performed"

• CSE 20 textbook "An algorithm is a finite sequence of

precise instructions for performing a computation or for

solving a problem."

Church-Turing thesis

Each algorithm can

be implemented by

some Turing

machine.

Variants of TMs
• Scratch work, copy input, … Multiple tapes

• Parallel computation Nondeterminism

• Printing vs. accepting Enumerators

• More flexible transition function
• Can "stay put"

• Can "get stuck"

• Can "goto" cell on tape

• lots of examples in exercises to Chapter 3

Also: wildly different models

• λ-calculus, Post canonical systems, URMs, etc.

All these models are

equally expressive!

"Equally expressive"
Model 1 is equally expressive as Model 2 iff

• every language recognized by some machine in Model 1 is recognizable by some
machine in Model 2, and

• every language recognized by some machine in Model 2 is recognizable by some
machine in Model 1.

Which of the following statements is true?

A. NFAs and PDAs are equally expressive because they may both be
nondeterministic.

B. PDAs and Turing machines are equally expressive because they can both
write (to a stack or the tape).

C. NFAs and DFAs are equally expressive because they can be translated to one
another.

D. None of the above.

Model 1 Model 2

Turing machines that can stay
• Transition function

Q x Γ  Q x Γ x {L,R,S}

Sketch of proof of equivalence:

To allow for stay put instead of only left and right: Replace

each stay put transition with two transitions: one that

moves to the right and the second back to the left.
Sipser: 176

Multitape TMs Sipser p. 176

• As part of construction of machine, declare some finite number
of tapes that are available.

• Input given on tape 1, rest of the tapes start blank.

• Each tape has its own read/write head.

• Transition function

Q x Γk
 Q x Γk x {L,R,S}k

Sketch of proof of equivalence:

To simulate multiple tapes with one tape: Use delimiter to keep
tape contents separate, use special symbol to indicate location
of each read/write head.

Nondeterministic TMs Sipser p. 178

At any point in the computation, machine may proceed
according to several possibilities.

Transition function

Q x Γ  P(Q x Γ x {L,R})

Sketch of proof of equivalence:

To simulate nondeterministic machine: Use 3 tapes to do
breadth-first search of computation tree: "read-only" input
tape, simulation tape, tape tracking nondeterministic
braching.

Very different model: Enumerators Sipser p. 180

Produce language as output rather than recognize input

Finite

State

Control
a b a b ….

Unlimited work tape

Computation proceeds

according to transition

function.

At any point, machine may

"send" a string to printer.

L(E) = { w | E eventually, in

finite time, prints w}

Printer

Enumerators
Which of the following is a high level description for an

enumerator that enumerates the set {0}?

A. "On input w, if w = 0 accept, otherwise reject."

B. "Ignore input. If w = 0 accept, otherwise reject."

C. "On input w, reject."

D. "Ignore input. Print the string 0."

E. None of the above.

Recognition and enumeration Sipser Theorem 3.21

Theorem: A language L is Turing-recognizable iff some

enumerator enumerates L.

Proof:

1. Assume L is Turing-recognizable. WTS some

enumerator enumerates it.

2. Assume L is enumerated by some enumerator. WTS L

is Turing-recognizable.

Recognition and enumeration Sipser Theorem 3.21

2. Assume the enumerator E enumerates L. WTS L is
Turing-recognizable.

We'll use E in a subroutine for high-level description of Turing
machine M that will recognize L.

Define M as follows: M = "On input w,

1. Run E. For each string x printed by E

• If x = w, accept. Otherwise, continue."

Correctness?

Recognition and enumeration Sipser Theorem 3.21

1. Assume L is Turing-recognizable. WTS some enumerator

enumerates it.

Let M be a TM that recognizes L. We'll use M in a subroutine for high-

level description of enumerator E.

Idea: check each string in turn to see if it is in L = L(M).

Standard string

ordering: order

strings first by length,

then dictionary order.

(p. 14)

Recognition and enumeration Sipser Theorem 3.21

1. Assume L is Turing-recognizable. WTS some enumerator

enumerates it.

Let M be a TM that recognizes L. We'll use M in a subroutine for high-

level description of enumerator E.

Let s1, s2, … be a list of all strings in Σ* in standard string order

E = "Ignore any input. Repeat the following for i=1,2,3…

1. Run M for i steps on each input s1, …, si

2. If any of the i computations of M accepts, print out the accepted

string."

Correctness?

Suppose M is TM

that recognizes L

Suppose D is TM

that decides L

Suppose E is

enumerator that

enumerates L

If string w is in L

then …

If string w is not in

L then …

For next time
GroupHW5 due Saturday, February 24

For Friday, pre-class reading: pp. 185 (middle)

