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Today's learning goals Sipser Section 3.2

• Describe several variants of Turing machines and 

informally explain why they are equally expressive.

• State and use the Church-Turing thesis.



Describing TMs Sipser p. 184-185

• Formal definition: set of states, input alphabet, tape 
alphabet, transition function, state state, accept state, 
reject state.

• Implementation-level definition: English prose to 
describe Turing machine head movements relative to 
contents of tape.

• High-level desciption: Description of algorithm, without 
implementation details of machine.  As part of this 
description, can "call" and run another TM as a 
subroutine.



Context-free languages

Regular languages

Turing decidable languages

Turing recognizable languages



High-level description = Algorithm
• Wikipedia "self-contained step-by-step set of operations to 

be performed"

• CSE 20 textbook "An algorithm is a finite sequence of 

precise instructions for performing a computation or for 

solving a problem."

Church-Turing thesis

Each algorithm can 

be implemented by 

some Turing 

machine.



Variants of TMs
• Scratch work, copy input, … Multiple tapes

• Parallel computation Nondeterminism

• Printing vs. accepting Enumerators

• More flexible transition function
• Can "stay put"

• Can "get stuck"

• Can "goto" cell on tape

• lots of examples in exercises to Chapter 3

Also: wildly different models 

• λ-calculus, Post canonical systems, URMs, etc.

All these models are 

equally expressive!



"Equally expressive"
Model 1 is equally expressive as Model 2 iff

• every language recognized by some machine in Model 1 is recognizable by some 
machine in Model 2, and

• every language recognized by some machine in Model 2 is recognizable by some 
machine in Model 1.

Which of the following statements is true?

A. NFAs and PDAs are equally expressive because they may both be 
nondeterministic.

B. PDAs and Turing machines are equally expressive because they can both 
write (to a stack or the tape).

C. NFAs and DFAs are equally expressive because they can be translated to one 
another.

D. None of the above.

Model 1 Model 2



Turing machines that can stay
• Transition function

Q x Γ  Q x Γ x {L,R,S}

Sketch of proof of equivalence: 

To allow for stay put instead of only left and right: Replace 

each stay put transition with two transitions: one that 

moves to the right and the second back to the left.
Sipser: 176



Multitape TMs Sipser p. 176

• As part of construction of machine, declare some finite number 
of tapes that are available.

• Input given on tape 1, rest of the tapes start blank.

• Each tape has its own read/write head.

• Transition function

Q x Γk
 Q x Γk x {L,R,S}k

Sketch of proof of equivalence: 

To simulate multiple tapes with one tape: Use delimiter to keep 
tape contents separate, use special symbol to indicate location 
of each read/write head.



Nondeterministic TMs Sipser p. 178

At any point in the computation, machine may proceed 
according to several possibilities.

Transition function

Q x Γ  P(Q x Γ x {L,R})

Sketch of proof of equivalence:

To simulate nondeterministic machine: Use 3 tapes to do 
breadth-first search of computation tree: "read-only" input 
tape, simulation tape, tape tracking nondeterministic 
braching.



Very different model: Enumerators Sipser p. 180

Produce language as output rather than recognize input

Finite 

State 

Control
a     b     a     b        ….

Unlimited work tape

Computation proceeds 

according to transition 

function.

At any point, machine may 

"send" a string to printer.

L(E) = { w | E eventually, in 

finite time, prints w}

Printer



Enumerators
Which of the following is a high level description for an 

enumerator that enumerates the set {0}?

A. "On input w, if w = 0 accept, otherwise reject."

B. "Ignore input. If w = 0 accept, otherwise reject."

C. "On input w, reject."

D. "Ignore input. Print the string 0."

E. None of the above.



Recognition and enumeration Sipser Theorem 3.21

Theorem: A language L is Turing-recognizable iff some 

enumerator enumerates L.

Proof: 

1. Assume L is Turing-recognizable.  WTS some 

enumerator enumerates it.

2. Assume L is enumerated by some enumerator.  WTS L 

is Turing-recognizable.



Recognition and enumeration Sipser Theorem 3.21

2. Assume the enumerator E enumerates L.  WTS L is 
Turing-recognizable.

We'll use E in a subroutine for high-level description of Turing 
machine M that will recognize L.

Define M as follows: M = "On input w, 

1. Run E.  For each string x printed by E

• If x = w, accept. Otherwise, continue."

Correctness?



Recognition and enumeration Sipser Theorem 3.21

1. Assume L is Turing-recognizable.  WTS some enumerator 

enumerates it.

Let M be a TM that recognizes L.  We'll use M in a subroutine for high-

level description of enumerator E.

Idea: check each string in turn to see if it is in L = L(M).

Standard string 

ordering: order 

strings first by length, 

then dictionary order. 

(p. 14)



Recognition and enumeration Sipser Theorem 3.21

1. Assume L is Turing-recognizable.  WTS some enumerator 

enumerates it.

Let M be a TM that recognizes L.  We'll use M in a subroutine for high-

level description of enumerator E.

Let s1, s2, … be a list of all strings in Σ* in standard string order

E = "Ignore any input. Repeat the following for i=1,2,3…

1. Run M for i steps on each input s1, …, si

2. If any of the i computations of M accepts, print out the accepted 

string."

Correctness?



Suppose M is TM 

that recognizes L

Suppose D is TM 

that decides L

Suppose E is 

enumerator that 

enumerates L

If string w is in L 

then …

If string w is not in 

L then …



For next time
GroupHW5 due Saturday, February 24

For Friday, pre-class reading: pp. 185 (middle)


