Today's learning goals

• Design TMs using different levels of descriptions.
• Determine whether a Turing machine is a decider.
• Prove properties of the classes of recognizable and decidable sets.
Describing TMs

- **Formal definition**: set of states, input alphabet, tape alphabet, transition function, state state, accept state, reject state.

- **Implementation-level definition**: English prose to describe Turing machine head movements relative to contents of tape.

- **High-level description**: Description of algorithm, without implementation details of machine. As part of this description, can "call" and run another TM as a subroutine.
Language of a TM

$L(M) = \{ w \mid M \text{ accepts } w \}$

If w is in $L(M)$ then the computation of M on w halts and accepts.

If the computation of M on w halts and rejects, then w is not in $L(M)$.

If the computation of M on w doesn't halt, then w is not in $L(M)$.

Sipser p. 144
Deciders and recognizers

• L is **Turing-recognizable** if some Turing machine recognizes it.

• M is a **decider** TM if it halts on all inputs.

• L is **Turing-decidable** if some Turing machine that is a decider recognizes it.
An example

Which of the following is an implementation-level description of a TM which decides the empty set?

M = "On input w:
A. reject."
B. sweep right across the tape until find a non-blank symbol. Then, reject."
C. If the first tape symbol is blank, accept. Otherwise, reject."
D. More than one of the above.
E. I don't know."
Extension

- Give an implementation-level description of a Turing machine which recognizes (but does not decide) the empty set.

- Give a high-level description of this Turing machine.
Classifying languages

A language L is

Turing-recognizable if there is a TM M such that $L(M) = L$.

Turing-decidable if there is a TM M such that M is a decider and $L(M) = L$.
Context-free languages

Regular languages

Turing decidable languages

Turing recognizable languages
Closure

Theorem: The class of decidable languages over fixed alphabet Σ is closed under union.

Proof: Let …

WTS …
Closure

Theorem: The class of decidable languages over fixed alphabet Σ is closed under union.

Proof: Let L_1 and L_2 be languages over Σ and suppose M_1 and M_2 are TMs deciding these languages. We will define a new TM, M, via a high-level description. We will then show that $L(M) = L_1 \cup L_2$ and that M always halts.
Closure

Theorem: The class of decidable languages over fixed alphabet Σ is closed under union.

Proof: Let L_1 and L_2 be languages and suppose M_1 and M_2 are TMs deciding these languages. Construct the TM M as "On input w,
1. Run M_1 on input w. If M_1 accepts w, accept. Otherwise, go to 2.
2. Run M_2 on input w. If M_2 accepts w, accept. Otherwise, reject."

Correctness of construction:
WTS $L(M) = L_1 \cup L_2$ and M is a decider.

Where do we use decidability?
Closure

Good exercises – can't use without proof! (Sipser 3.15, 3.16)

<table>
<thead>
<tr>
<th>The class of decidable languages is closed under</th>
<th>The class of recognizable languages is closed under</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Union ✓</td>
<td>- Union</td>
</tr>
<tr>
<td>- Concatenation</td>
<td>- Concatenation</td>
</tr>
<tr>
<td>- Intersection</td>
<td>- Intersection</td>
</tr>
<tr>
<td>- Kleene star</td>
<td>- Kleene star</td>
</tr>
<tr>
<td>- Complementation</td>
<td></td>
</tr>
</tbody>
</table>
For next time

GroupHW4 due Saturday, February 17

For Monday, pre-class reading: pp.