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After nearly 10 years of intense academic and commercial
research effort, large genome-wide association studies for
common complex diseases are now imminent. Although these
conditions involve a complex relationship between genotype
and phenotype, including interactions between unlinked loci1,
the prevailing strategies for analysis of such studies focus on
the locus-by-locus paradigm. Here we consider analytical
methods that explicitly look for statistical interactions between
loci. We show first that they are computationally feasible, even
for studies of hundreds of thousands of loci, and second that
even with a conservative correction for multiple testing, they
can be more powerful than traditional analyses under a range
of models for interlocus interactions. We also show that

plausible variations across populations in allele frequencies
among interacting loci can markedly affect the power to detect
their marginal effects, which may account in part for the well-
known difficulties in replicating association results. These
results suggest that searching for interactions among genetic
loci can be fruitfully incorporated into analysis strategies for
genome-wide association studies.

Since the completion of the human genome project, genome-wide
association studies have been considered to hold promise for unravel-
ing the genetic etiology of complex traits2. It is now possible to assess
this promise, as the emergence of large marker panels, large collections
of well-phenotyped human samples and high-throughput genotyping
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Figure 1 Multilocus models of disease. (a) The odds of disease for two loci under the epistatic scenarios considered. In model 1, the odds increase

multiplicatively with genotype both within and between loci. In model 2, the odds have a baseline value (a) unless both loci have at least one disease-

associated allele. After that, the odds increase multiplicatively within and between genotypes. Model 3 is similar to model 2 but specifies a threshold of

disease effects rather than multiplicative gene action. Both loci have the same effect size. As models 2 and 3 include no explicit marginal effects, they are

expected to be harder to detect without an interaction-based search strategy. (b) Examples of the genotypic risks under illustrative parameters. In these

examples, pA ¼ pB ¼ 0.25 and l ¼ 0.20, which permits derivation of the genotypic effects, y, as 0.20, 0.45 and 0.53 for the examples shown (left to
right); a ¼ 1.0 for illustration purposes.

Published online 27 March 2005; doi:10.1038/ng1537

1Department of Statistics, University of Oxford, 1 South Parks Road, Oxford OX1 3TG, UK. 2Wellcome Trust Centre for Human Genetics, University of Oxford,
Oxford OX3 7BN, UK. Correspondence should be addressed to L.R.C. (lon.cardon@well.ox.ac.uk).

NATURE GENETICS VOLUME 37 [ NUMBER 4 [ APRIL 2005 41 3

L E T T E R S
©

20
05

 N
at

ur
e 

P
ub

lis
hi

ng
 G

ro
up

  
ht

tp
://

w
w

w
.n

at
ur

e.
co

m
/n

at
ur

eg
en

et
ic

s



are enabling genome-wide assessment. Initial reports of such studies
are appearing in the literature3,4.

Despite the achievements that render genome-wide studies feasible,
it is not obvious how to analyze the resulting data productively. Most
analytical methods proceed by considering each genetic marker or
haplotype individually5, but increasing empirical evidence from model
organisms6–9 and human studies10,11 suggests that interactions among
loci contribute broadly to complex traits. Although there are many
possible biological configurations by which just two loci can interact,
much recent statistical work has focused on interaction models that
have little or no marginal effects at each locus12–14. Here we address
the following question: given the plausibility of interactions between
genetic loci with non-negligible marginal effects, how might we design
and analyze genome-wide association studies?

We consider three different statistical models for interlocus inter-
actions that attempt to mimic simple biological mechanisms (Fig. 1).
Model 1 involves multiplicative effects within and between loci: on the
appropriate scale, this model is additive and has marginal effects that
should be ‘detectable’ independent of other loci. Models 2 and 3
explicitly include interactions, in two different ways that are consistent
with plausible models15 in humans. We set the parameters of each
model so that the marginal effect (i.e., the effect at one locus
considered individually) is in the range suggested by empirical studies
in humans, namely relative risks of 1.2–2.0 (refs. 16,17).

We examined three strategies for analyzing genome-wide associa-
tion studies: strategy I, locus-by-locus search; strategy II, search over
all pairs of loci; and strategy III, a two-stage strategy in which all loci
meeting some low threshold in a single-locus search are subsequently
examined for a significant full model fit. This approach differs from

those that require that single loci meet strict statistical significance in
the first stage18; such approaches will miss loci with modest marginal
effects and large interactions19.

For power considerations, because the interaction strategies (stra-
tegies II and III) consider two disease-associated loci simultaneously,
they are directly comparable to a single-locus approach that defines
success on the basis of detecting both loci individually (which we call
strategy Ib). In initial genome-wide screens, however, the primary
objective may be to detect any locus irrespective of others involved.
Therefore, we also compared the interaction strategies with one in
which either of the interacting loci is detected (strategy Ia).

To assess the power of each strategy, we simulated genotypes at two
interacting loci in n cases and n controls. The power calculations
consider L ¼ 300,000 genotyped markers with only a single pair of
(unobserved) causative loci, each of which is in linkage disequilibrium
(LD) with one of the genotyped markers. We used Bonferroni correc-
tions to account for the large number of tests done in each strategy. In
the two strategies that look explicitly for interactions, we fit a full
model, not the interaction model under which the data are simulated.

An illustrative selection of the simulation results is presented in
Figure 2 for 2,000 cases and 2,000 controls in which the marginal
heterozygote odds ratio at both loci is equal to 1.5. The most notable
outcome is that there are many configurations in which the interac-
tion-based search strategies are more powerful than searching locus-
by-locus for all three models considered. These results are unexpected
because the interaction-based searches involve statistical correction
for as many as 105 times the number of tests of the single-locus
searches. Marginal effects still exist in these models, but the multilocus
information is so great as to negate the multiple-testing cost. As
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Figure 2 Power to detect genetic association

using different search strategies. Individual

panels show the power to detect association using

each of the search strategies considered. Red

lines, strategy Ia (requiring that at least one of

the two loci meets the significance threshold);

green lines, strategy Ib (requiring significance

at both loci); dark blue lines, full interaction

approach; light blue lines, two-stage strategy. The

columns show the three different ‘true’ disease

gene models. The rows show different levels of

LD between the unobserved disease-associated

loci and measured markers using constraint 2.

l is the size of the marginal effect at the

causative loci. The y axis of each panel shows the
statistical power for each of the strategies. The

x axes show the minor allele frequency (MAF) of

the disease-causing alleles (assumed equal for

both loci). For this subset of results, n ¼ 2,000

cases and 2,000 controls and l ¼ 0.50. The

nominal significance threshold for all simulations

was set at a ¼ 0.05, with the initial screening

threshold for two-stage tests set at a1 ¼ 0.10.

A more comprehensive set of outcomes is

provided in Supplementary Note online.
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expected20, power is strongly correlated with allele frequency at the
disease-associated loci and increases with LD between the marker and
disease-associated loci (Fig. 2 and Supplementary Note online). These
relationships hold rather generally across the disease models and search
strategies that we examined. An exception occurs for model 1, such
that single-locus searches for either of the two interacting loci (strategy
Ia) often yield more power than interaction-based searches, but at the
expense of uncovering only one of the loci. Our results thus extend the
role of interaction-based searches beyond situations where they are of
obvious importance (e.g., large effects in which all individual loci are
essential for detection12,13) to some that are less obvious (e.g., modest
single-locus effects that may not meet statistical significance individu-
ally but that are detectable when considered jointly19).

The computational burden of searching for interactions can prevent
full assessment14. A notable finding of this study is that all three
strategies considered are computationally feasible for large sample
sizes and genome-wide settings, with the most demanding strategy
(strategy II) taking B33 hours to analyze on a ten-node cluster for
1,000 cases and 1,000 controls (Supplementary Note online). The fact
that this strategy is possible is especially relevant for models involving
no marginal effects12–14, as it is the only one of the three we considered
that would uncover the loci involved.

Our results bear on the reported failure to replicate association
studies upon follow-up17,21. In addition to the oft-cited factors of
statistical overinterpretation, small sample sizes, genetic and pheno-
typic heterogeneity, and population structure, these results highlight
the possibility that for interacting loci, differences in allele frequencies
between initial and replicate populations affect the power of single-
locus strategies and thus hinder reproducibility7,19,22. (This is different

from the problem of false positives caused by cryptic structure in a
study population.) To explore this possibility further, we simulated
two unlinked loci (denoted A and B) in a study of two separate
populations and examined how often one of the loci (locus A) would
be detected in none, only one or both of the populations. The studies
can often differ in their detection of a disease-associated locus (Fig. 3),
especially as the two populations become more genetically differen-
tiated. This effect is most pronounced when the interacting disease-
associated allele (at locus B) is common in the initial population (pZ

0.10 in Fig. 3), where replication was generally not achieved in 430%
of the simulations. In practice, such nonreplication will be exacerbated
by differences in the frequencies of causative environmental factors.

There are several ways in which our analyses understate the
potential utility of analytical strategies that explicitly look for interac-
tions. First, we applied the simplest correction for multiple testing
(Bonferroni), which is conservative. The multiple-testing cost
of fitting interaction models is much greater than that for the
single-locus analyses. Therefore, with a less conservative penalty, the
relative power gain would be greater for the interaction strategies.
Permutation-based strategies, though computationally expensive, may
help to reduce the multiple testing burden. Second, obtaining the
correct error probabilities in sequential tests is not straightforward,
and our simple implementation of the two-stage strategy (strategy III)
is conservative (which explains why this approach does not greatly
outperform the full interaction approach (strategy II) in our compar-
isons). A more sophisticated sequential test would increase power and,
hence, increase the utility of explicitly considering interactions. Third,
all our models assume some level of marginal effects. In cases where
trait variation arises exclusively from interactions, interaction-based
searches will always perform better than single-locus tests.

The determination of a single best strategy for the detection of loci
in a general multilocus model is complicated because both the number
of interacting loci and the form of the interaction can vary, yielding
many possible models with different properties. Here we began with a
simple system of two loci. To gain a preliminary view of higher-order
statistical interactions, we extended our assessments to an analogous
class of three-locus models. We asked how well the one- and two-locus
search strategies perform when there are three interacting loci and,
more generally, whether there are better strategies for uncovering all
three loci under these models. Our conclusions regarding the first
point are similar to those for two-locus models: loci with large
marginal effects relative to their interaction effects are detected well
using single-locus searches, but loci with explicit three-way interac-
tions are more likely to be detected by searching for two-locus
marginal effects than by single-locus screening. Regarding the second
question, we also found that searching explicitly (using a two-stage
strategy) for all three loci together could be more powerful than both
single-locus and two-locus searches (Supplementary Note online).

There are several ways in which these analyses may be extended. For
simplicity, we considered models and analyses in which causative
alleles are single SNPs rather than haplotypes. Examination of
haplotype-based models would require many more assumptions, but
we would expect the same general conclusions to hold. In addition, we
focused on gene-gene interactions, but gene-environment interactions
could be handled by similar models, effectively by treating the
environmental variable as a locus. There is considerable interest in
study designs that pool DNA from sampled individuals to reduce
genotyping costs23, but pooling precludes the possibility of fitting
interaction models, which is a potential disadvantage of such designs.

We conclude that in analyzing genome-wide association studies,
fitting models that explicitly allow for interactions between loci can add
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Figure 3 Replication of marginal association effects among interacting loci.

Two interacting loci (A and B) were simulated in two populations using the

model of population structure validated in ref. 29. The mean allele

frequencies at the two loci were 0.1 and p, respectively. The variability

of the actual population allele frequencies was controlled through the

parameter c, which is equal to the traditional FST measure under these

scenarios. A single-locus logistic regression with 1 degree of freedom was

fitted to test for association at locus A. Each bar shows the three possible

study outcomes for detecting locus A: not detected in either population

(green), detected in only one population (i.e., detected in one sample but

not replicated in the second; gray) or detected in both populations
(i.e., detected and replicated; blue). As the disease-associated allele

frequency increases, the power to detect locus A increases, but as the allele

frequencies become more distinct between samples, the frequency of

replication decreases sharply and the proportion of times locus A is seen

in only one sample increases.
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substantially to single-locus searches. Perhaps unexpectedly, not only
are interaction-based searches computationally feasible for genome-
wide studies, but they can also be more powerful than single-locus
approaches, even when accounting for the multiple-testing cost. This
will not be true, however, when the single-locus effects are large relative
to the interaction effects, particularly if they are sufficient to identify at
least one of the loci. Although the power of any search strategy depends
on the underlying model, a useful compromise between exhaustive
searching and locus-by-locus tests may be obtained using a two-stage
approach that first identifies a set of single loci under liberal statistical
criteria and then evaluates all possible two-way interactions among
them under rigorous criteria, corrected for multiple testing.

METHODS
Two-locus models. There is a broad spectrum of scenarios for interactions

among genetic loci, ranging from situations in which no effects would be

detected by searching one locus at a time (reviewed in ref. 12) to those in which

the results of genetic interaction would be reflected in the marginal effects of

the two individual loci involved. The most general two-locus model for diallelic

loci has nine parameters in the 3 � 3 table of genotypes. We selected three

submodels of the general two-locus case for our comparisons of search

strategies. Figure 1a shows these models in terms of the odds of disease for

each combination of genotypes at two loci (A and B), parameterized as baseline

effects, a, and genotypic effects, y.

Model 1 specifies that the odds of disease increase in a multiplicative fashion

both within and between two loci. In this model, a individual who is

heterozygous at locus A has increased odds of 1 + y1 relative to those of an

individual who is homozygous aa; the AA homozygote has further multi-

plicative odds of (1 + y1)2. Similar effects for locus B are reflected in y2, and the

odds of disease for each combination of genotypes at loci A and B is the

product of the two within-locus effects.

Model 2 is a statistical interaction model that has explicit marginal effects.

In this model, at least one disease-associated allele must be present at each

locus for the odds to increase beyond the baseline level. Beyond that, each

additional copy of the disease-associated allele at loci A or B further increases

the odds by the multiplicative factor 1 + y. Both loci have the same effect size

(i.e., y ¼ y1 ¼ y2).

Model 3 takes the same form as Model 2 in requiring at least one copy of the

disease-associated alleles at both loci A and B, but additional copies of the

disease-associated alleles do not increase the risk further. This model reflects

disease threshold effects, in which a single copy of the disease-associated

allele at each locus is required to increase odds of disease, but having

both copies of the disease-associated allele at either locus has no additional

influence as the disease threshold has already been met. In classical terms15,

model 1 is multiplicative and models 2 and 3 are variants of complementary

gene models.

Marginalizing multilocus models. Most models for interaction between loci

still have an effect (the marginal effect) at each of the loci separately. The

magnitude of the marginal effect at a particular locus will depend on the model

parameters, y and a, and the allele frequencies at the other locus24. There is

relatively little data to indicate realistic interaction effect sizes for complex

traits. In contrast, there is increasing empirical information about the magni-

tude of the marginal effect sizes17. To make use of the empirical information,

we first fixed the marginal effect sizes under our three models and then worked

backwards to determine the magnitude of the interaction effects. For this

approach, we defined a marginal parameter, l, and a disease prevalence, p (here

p ¼ 0.01), set the heterozygote odds ratio to a value of 1 + l and then

numerically derived the values of the model parameters y and a under a range

of allele frequencies (details provided in Supplementary Note online). As an

example, for Model 2,

l ¼

2ypBð1 � pBÞ
1+að1+yÞ

+
yð2 + yÞp2

B

1 + að1 + yÞ2

ð1 � pBÞ2

1 + a
+

2pBð1 � pBÞ
1 + að1 + yÞ

+
p2

B

1 + að1 + yÞ2

:

This shows the size of effect we can expect to see marginally (at locus A) for an

interaction parameterized by y that involves an unobserved locus (locus B)

with allele frequency pB.

Given the parameters of the two-locus model, we also considered the slightly

more complicated situation of LD between the disease-associated loci and

otherwise anonymous markers. By specifying the level of LD (using the

pairwise parameter r2) between a marker, X, in LD with disease-associated

locus A and, similarly, the level of LD between an unlinked marker, Y, in LD

with disease-associated locus B, we extended our approach to the situation in

which the disease-predisposing loci are not observed but two correlated

markers are genotyped instead. The derivation of this extension is provided

in Supplementary Note online.

Strategies for searching for interactions. We present the disease models in

terms of the odds of disease. For statistical assessment and comparisons of

search strategies, it is somewhat more natural to work with the logarithm of the

odds, because the multiplicative relationships become additive on the log-odds

scale. This is the natural setting for logistic regression, for which there is well-

developed theory for case-control studies25. We used this framework to

compare search strategies, taking advantage of the composition of genotype

data for computational efficiency (Supplementary Note online).

For the three models in Figure 1, we simulated genotypes at loci X and Y for

a range of parameter settings (n ¼ 1,000, 2,000 or 4,000; pA ¼ pB ¼ 0.05, 0.1,

0.2 or 0.5; r2 ¼ 0.5, 0.7 or 1.0; and l ¼ 0.2, 0.5 or 1.0). By selecting these

settings, we focused on effects and sample sizes for which choice of search

strategies could matter. In other settings, where all approaches have either very

low or very high power, the comparisons are less interesting. For each

combination of these parameters, we carried out 1,000 simulations and assessed

the power of the following three strategies to detect the interacting loci.

Strategy I: single locus. For any single locus there are three possible genotypes,

and we fitted a full logistic model with a parameter for each observed genotype.

In quantitative genetics terms, this parameterization is the full single-locus

model involving an intercept plus additive and dominance terms26. To ensure

an overall type I error of at most a, we used a Bonferroni correction to set the

significance level of the test at each locus to a/L. For comparisons with

interaction search strategies, we evaluated this strategy by two criteria:

(i) requiring that at least one of the two loci meet the significance threshold,

irrespective of the other locus, or (ii) requiring that both loci are significant.

The former criterion is appropriate when the main aim is to find any genetic

locus, whereas the latter is more appropriate for comparing different strategies

to detect interactions. As these situations relate to different scientific questions,

we assessed them both and refer to the ‘either locus’ and ‘both loci’ scenarios as

strategies Ia and Ib, respectively.

Strategy II: full interaction. We fitted the full logistic regression model (with at

most nine parameters) to the 3 � 3 table of observed genotypes at the pair of

loci. The parameters comprise an intercept, additive and dominance terms for

each locus, and four interaction terms. We used a Bonferroni correction to set

the significance level of each test to a/LC2. We defined ‘success’ on the basis of a

significant model fit, which is different from testing the interaction terms over

and above the main effects.

Strategy III: two-stage. In the first stage, we identified all loci that were

significant in single-locus tests (as above) at a liberal level a1. We called this set

of loci I1 D {1,y,L}. We let d1 be the degrees of freedom of the single-locus

model fitted at stage one for locus l (maximum 2 degrees of freedom if all three

genotypes are present) and defined kl such that Pðw2
di
4klÞ ¼ a1 for l D I1.

In the second stage, for each pair of loci l and m identified in stage one

(l,m A I1, l a m), we calculated the log likelihood ratio statistic R(l,m) for the

full interaction model. Because of the way in which loci l and m were identified,

R(l,m) Z kl + km. Therefore, we defined a new statistic R¢(l,m) ¼ R(l,m) � (kl +

km) and assessed the significance of this statistic against a w2
d0 distribution in

which d¢ is the degrees of freedom of the full model fitted at the two loci. We set

the level of significance using a Bonferroni correction based on the expected

number of tests to be done ða
�ða1LÞC2Þ: Through simulation, we found this

procedure to provide a conservative test of interaction between two loci (data

not shown).
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In the above three strategies, we used log likelihood ratio tests for the full

logistic regression model27. Given the nine parameters (at most) in each model

fitted and the reasonably large sample sizes that we assumed, we avoided the

estimation bias of logistic regression in the presence of sparse data12,14. For all

simulations, we set the nominal significance threshold at a ¼ 0.05. Our two-

stage approach is similar in principle to that of ref. 28, but we set a liberal

first-stage screening level (here a1 ¼ 0.10) in an attempt to detect loci with

large interactions but small marginal effects19. We deliberately chose the sample

sizes to be large to correspond to expected requirements for complex trait

studies, but even for these large samples, there exist many models in which the

power of detection will be low for some or all search strategies considered

(e.g., for rare alleles).

Note: Supplementary information is available on the Nature Genetics website.
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