CSE 258
Web Mining and Recommender Systems

Assignment 1
Assignment 1

- Two recommendation tasks
- Due **Feb 27** (four weeks -2 days from today)
- Submissions should be made on Kaggle, plus a short report to be submitted to gradescope
Assignment data is available on:
http://jmcauley.ucsd.edu/data/assignment1.tar.gz

Detailed specifications of the tasks are available on:
http://cseweb.ucsd.edu/classes/wi17/cse258-a/files/assignment1.pdf
(or in this slide deck)
Data

1. Training data: 200k clothing reviews from Amazon

```json
{
    'categoryID': 0,
    'categories': [['Clothing, Shoes & Jewelry', 'Women', 'Clothing', 'Lingerie, Sleep & Lounge', 'Intimates', 'Bras', 'Everyday Bras'], ['Clothing, Shoes & Jewelry', 'Women', 'Petite', 'Intimates', 'Bras', 'Everyday Bras']],
    'itemID': 'I241092314',
    'reviewerID': 'U023577405',
    'rating': 4.0,
    'reviewText': 'I love the look of this bra, it is what I wanted, however, it is about a cup size AND band size too small. The cups are sheer, which is what I wanted and the look is very sexy and it arrived much quicker than promised. I plan to order another one, but in a larger size.',
    'reviewHash': 'R800651687',
    'reviewTime': '02 7, 2013',
    'summary': 'Beautiful but size runs small',
    'unixReviewTime': 1360195200,
    'helpful': {'outOf': 0, 'nHelpful': 0}
}
```
1. Estimate how **helpful** people will find a user’s review of a product

```python
f(user,item,outOf) -> nHelpful
```
Assignment 1

Tasks – CSE258 only

2. Estimate the rating given a user/item pair

```json
{'categoryID': 0, 'categories': [['Clothing, Shoes & Jewelry', 'Women', 'Clothing', 'Lingerie, Sleep & Lounge', 'Intimates', 'Bras', 'Everyday Bras'], ['Clothing, Shoes & Jewelry', 'Women', 'Petite', 'Intimates', 'Bras', 'Everyday Bras']], 'itemID': 'I241092314', 'reviewerID': 'U023577405', 'rating': 4.0, 'reviewText': 'I love the look of this bra, it is what I wanted, however, it is about a cup size AND band size too small. The cups are sheer, which is what I wanted and the look is very sexy and it arrived much quicker than the 5 day delivery. Had to return it, not the one, but in a larger size.', 'reviewTime': '02 7, 2013', 'summary': 'Beautiful but size runs small', 'unixReviewTime': 1360195200, 'helpful': {'outOf': 0, 'nHelpful': 0}}
```

\[f(user, item) \rightarrow \text{star rating} \]
1. Estimate how helpful people will find a user’s review of a product

Absolute error:

\[\text{AE}(\hat{r}, r) = \frac{1}{N} \sum_{u,i} |\hat{r}_{u,i} - r_{u,i}| \]

predictions (# helpfulness votes)

actual # helpfulness votes
Assignment 1

Evaluation

1. Estimate how helpful people will find a user’s review of a product

• You are given the total number of votes, from which you must estimate the number that were helpful
• I chose this value (rather than, say, estimating the fraction of helpfulness votes for each review) so that each vote is treated as being equally important
• The Absolute error is then simply a count of how many votes were predicted incorrectly
Assignment 1

Evaluation

2. Estimate what rating a user would give to an item

$$\text{RMSE}(f) = \sqrt{\frac{1}{N} \sum_{u,i,t \in \text{test set}} (f(u, i, t) - r_{u,i,t})^2}$$

model’s prediction

ground-truth

(just like the Netflix prize)
Test data

It’s a secret! I’ve provided files that include lists of tuples that need to be predicted:

- pairs_Helpful.txt
- pairs_Category.txt
- pairs_Rating.txt
Assignment 1

Test data

Files look like this
(note: not the actual test data):

```
userID-itemID,prediction
U310867277-I435018725,4
U258578865-I545488412,3
U853582462-I760611623,2
U158775274-I102793341,4
U152022406-I380770760,1
U977792103-I662925951,1
U686157817-I467402445,2
U160596724-I061972458,2
U830345190-I826955550,5
U027548114-I046455538,5
U251025274-I482629707,1
```
Test data

But I’ve only given you this:
(you need to estimate the final column)

```
userID-itemID,prediction
U310867277-I435018725
U258578865-I545488412
U853582462-I760611623
U158775274-I102793341
U152022406-I380770760
U977792103-I662925951
U686157817-I467402445
U160596724-I061972458
U830345190-I826955550
U027548114-I046455538
U251025274-I482629707
```

last column missing
Baselines

I’ve provided some simple baselines that generate valid prediction files
(see baselines.py)
Baselines

1. Estimate how helpful people will find a user’s review of a product
 - Predict the global average helpfulness rate, or the user’s average helpfulness rate if we’ve observed this user before
2. Estimate what rating a user would give to an item

Use the global average, or the user’s personal average if we have seen that user before
Kaggle

I’ve set up a competition webpage to evaluate your solutions and compare your results to others in the class:

https://inclass.kaggle.com/c/cse158-258-helpfulness-prediction
https://inclass.kaggle.com/c/cse258-rating-prediction

The leaderboard only uses 50% of the data – your final score will be (partly) based on the other 50%
Marking

Each of the two tasks is worth 10% of your grade. This is divided into:

- 5/10: Your performance compared to the simple baselines I have provided. It should be easy to beat them by a bit, but hard to beat them by a lot
- 3/10: Your performance compared to others in the class on the held-out data
- 2/10: Your performance on the seen portion of the data. This is just a consolation prize in case you badly overfit to the leaderboard, but should be easy marks.

- 5 marks: A brief written report about your solution. The goal here is not (necessarily) to invent new methods, just to apply the right methods for each task. Your report should just describe which method/s you used to build your solution
Fabulous prizes!

Much like the Netflix prize, there will be an award for the student with the lowest MSE on Monday Feb. 27th

(estimated value US$1.29)
Homework

Homework 3 is intended to get you set up for this assignment

(Homework is already out, but not due until Feb. 20)
What worked last year, and what did I change?
Assignment 1

What worked last year, and what did I change?
Questions?