Announcements

• Assignment 1 is out
• It will be due in week 8 on Monday before class
• HW3 will help you set up an initial solution
• HW1 solutions have been posted to Piazza
Why recommendation?

The goal of recommender systems is...
• To help people discover new content
Why recommendation?

The goal of recommender systems is...
• To help us find the content we were already looking for

Are these recommendations good or bad?
Why recommendation?

The goal of recommender systems is...

- To discover which things go together
Why recommendation?

The goal of recommender systems is...

• To personalize user experiences in response to user feedback
Why recommendation?

The goal of recommender systems is...
- To recommend incredible products that are relevant to our interests
Why recommendation?

The goal of recommender systems is...

• To identify things that we like
The goal of recommender systems is...

- To help people discover new content
- To help us find the content we were already looking for
- To discover which things go together
- To personalize user experiences in response to user feedback
- To identify things that we like

To **model** people’s preferences, opinions, and behavior
Suppose we want to build a movie recommender e.g. which of these films will I rate highest?
Recommending things to people

We already have a few tools in our “supervised learning” toolbox that may help us

\[f(\text{user features, movie features}) \rightarrow \text{star rating} \]
Recommending things to people

\[f(\text{user features, movie features}) \rightarrow \text{star rating} \]

Movie features: genre, actors, rating, length, etc.

User features: age, gender, location, etc.
Recommending things to people

\[f(\text{user features, movie features}) \rightarrow \text{star rating} \]

With the models we’ve seen so far, we can build predictors that account for...

- Do women give higher ratings than men?
- Do Americans give higher ratings than Australians?
- Do people give higher ratings to action movies?
- Are ratings higher in the summer or winter?
- Do people give high ratings to movies with Vin Diesel?

So what can’t we do yet?
Recommending things to people

Consider the following linear predictor (e.g. from week 1):

\[f(\text{user features}, \text{movie features}) \rightarrow \text{star rating} \]

\[f(\text{user features}, \text{movie features}) = \langle \phi(\text{user features}); \phi(\text{movie features}), \theta \rangle \]

\[\langle \phi(\text{user}), \theta_{\text{user}} \rangle + \langle \phi(\text{movie}), \theta_{\text{item}} \rangle \]
But this is essentially just two separate predictors!

\[
f(\text{user features, movie features}) = \\
= \langle \phi(\text{user features}), \theta_{\text{user}} \rangle + \langle \phi(\text{movie features}), \theta_{\text{movie}} \rangle
\]

That is, we’re treating user and movie features as though they’re independent!
Recommending things to people

But these predictors should (obviously?) not be independent

\[f(\text{user features, movie features}) = f(\text{user}) + f(\text{movie}) \]

do I tend to give high ratings?

does the population tend to give high ratings to this genre of movie?

But what about a feature like “do I give high ratings to this genre of movie”?
Recommending things to people

Recommender Systems go beyond the methods we’ve seen so far by trying to model the **relationships** between people and the items they’re evaluating.

Preference toward “action”

Preference toward “special effects”

Compatibility

Is the movie action-heavy?

Are the special effects good?
Today

Recommender Systems

1. Collaborative filtering
 (performs recommendation in terms of user/user and item/item similarity)

2. Assignment 1

3. (next lecture) Latent-factor models
 (performs recommendation by projecting users and items into some low-dimensional space)

4. (next lecture) The Netflix Prize
Q: How can we measure the similarity between two users?
A: In terms of the items they purchased!

Q: How can we measure the similarity between two items?
A: In terms of the users who purchased them!
Defining similarity between users & items

e.g.: Amazon
Definitions

\[I_u = \text{set of items purchased by user } u \]
\[U_i = \text{set of users who purchased item } i \]
Definitions

Or equivalently...

\[R = \begin{pmatrix}
1 & 0 & \cdots & 1 \\
0 & 0 & 1 \\
\vdots & \ddots & \ddots & \vdots \\
1 & 0 & \cdots & 1
\end{pmatrix} \]

\(R_u = \text{binary representation of items purchased by } u \)

\(R_{.,i} = \text{binary representation of users who purchased } i \)

\[I_u = \{ i \mid R_{u,i} = 1 \} \quad U_i = \{ u \mid R_{u,i} = 1 \} \]
Euclidean distance:
e.g. between two items i,j (similarly defined between two users)

$$|U_i \setminus U_j| + |U_j \setminus U_i| = \|R_i - R_j\|$$
0. Euclidean distance

Euclidean distance:

e.g.: \(U_1 = \{1, 4, 8, 9, 11, 23, 25, 34\} \)
\(U_2 = \{1, 4, 6, 8, 9, 11, 23, 25, 34, 35, 38\} \)
\(U_3 = \{4\} \)
\(U_4 = \{5\} \)

\[|U_1 \setminus U_2| + |U_2 \setminus U_1| = 3 \]
\[|U_3 \setminus U_4| + |U_3 \setminus U_4| = 0 \]

Problem: favors small sets, even if they have few elements in common
1. Jaccard similarity

\[
\text{Jaccard}(A, B) = \frac{|A \cap B|}{|A \cup B|}
\]

\[
\text{Jaccard}(U_i, U_j) = \frac{|U_i \cap U_j|}{|U_i \cup U_j|}
\]

→ Maximum of 1 if the two users purchased **exactly the same** set of items (or if two items were purchased by the same set of users)

→ Minimum of 0 if the two users purchased **completely disjoint** sets of items (or if the two items were purchased by completely disjoint sets of users)
2. Cosine similarity

\[\theta = \cos^{-1} \left(\frac{\mathbf{A} \cdot \mathbf{B}}{\| \mathbf{A} \| \| \mathbf{B} \|} \right) \]

\[\cos \theta = \frac{\mathbf{u}_i \cdot \mathbf{u}_j}{\| \mathbf{u}_i \| \| \mathbf{u}_j \|} \]

- \(\cos(\theta) = 1 \) (theta = 0) \(\rightarrow \) \(\mathbf{A} \) and \(\mathbf{B} \) point in exactly the same direction

- \(\cos(\theta) = -1 \) (theta = 180) \(\rightarrow \) \(\mathbf{A} \) and \(\mathbf{B} \) point in opposite directions (won’t actually happen for 0/1 vectors)

- \(\cos(\theta) = 0 \) (theta = 90) \(\rightarrow \) \(\mathbf{A} \) and \(\mathbf{B} \) are orthogonal

\(\mathbf{U}_{\text{harry potter}} \) (vector representation of users who purchased harry potter)
2. Cosine similarity

Why cosine?

- Unlike Jaccard, works for arbitrary vectors
- E.g. what if we have **opinions** in addition to purchases?

\[R = \begin{pmatrix} 1 & 0 & \cdots & 1 \\ 0 & 0 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & \cdots & 1 \end{pmatrix} \rightarrow \begin{pmatrix} -1 & 0 & \cdots & 1 \\ 0 & 0 & \cdots & -1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & \cdots & -1 \end{pmatrix} \]

bought and **liked**
didn’t buy
bought and **hated**
2. Cosine similarity

E.g. our previous example, now with “thumbs-up/thumbs-down” ratings

$U_{\text{pitch black}}$

$U_{\text{harry potter}}$

(vector representation of users’ ratings of Harry Potter)

$$\cos(\theta) = 1$$

(theta = 0) → Rated by the same users, and they all agree

$$\cos(\theta) = -1$$

(theta = 180) → Rated by the same users, but they completely disagree about it

$$\cos(\theta) = 0$$

(theta = 90) → Rated by different sets of users
4. Pearson correlation

What if we have numerical ratings (rather than just thumbs-up/down)?

\[R = \begin{pmatrix} -1 & 0 & \cdots & 1 \\ 0 & 0 & \cdots & -1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & \cdots & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 4 & 0 & \cdots & 2 \\ 0 & 0 & \cdots & 3 \\ \vdots & \vdots & \ddots & \vdots \\ 5 & 0 & \cdots & 1 \end{pmatrix} \]

bought and **liked**
didn’t buy
bought and **hated**
What if we have numerical ratings (rather than just thumbs-up/down)?
4. Pearson correlation

What if we have numerical ratings (rather than just thumbs-up/down)?

- We wouldn’t want 1-star ratings to be parallel to 5-star ratings
- So we can subtract the average – values are then **negative** for below-average ratings and **positive** for above-average ratings

\[
\text{Sim}(u, v) = \frac{\sum_{i \in I_u \cap I_v} (R_{u,i} - \bar{R}_u)(R_{v,i} - \bar{R}_v)}{\sqrt{\sum_{i \in I_u \cap I_v} (R_{u,i} - \bar{R}_u)^2 \sum_{i \in I_u \cap I_v} (R_{v,i} - \bar{R}_v)^2}}
\]
4. Pearson correlation

Compare to the cosine similarity:

Pearson similarity (between users):

\[
\text{Sim}(u, v) = \frac{\sum_{i \in I_u \cap I_v} (R_u,i - \bar{R}_u)(R_v,i - \bar{R}_v)}{\sqrt{\sum_{i \in I_u \cap I_v} (R_u,i - \bar{R}_u)^2 \sum_{i \in I_u \cap I_v} (R_v,i - \bar{R}_v)^2}}
\]

Cosine similarity (between users):

\[
\text{Sim}(u, v) = \frac{\sum_{i \in I_u \cap I_v} R_u,i R_v,i}{\sqrt{\sum_{i \in I_u \cap I_v} R_u,i^2 \sum_{i \in I_u \cap I_v} R_v,i^2}} = \frac{\sum_{i \in I_u \cap I_v} R_u,i R_v,i}{||I_u|| \cdot ||I_v||}
\]
Collaborative filtering in practice

How does Amazon generate their recommendations?

Given a product: Let U_i be the set of users who viewed it

Rank products according to: $\frac{|U_i \cap U_j|}{|U_i \cup U_j|}$ (or cosine/pearson)
Collaborative filtering in practice

Note: (surprisingly) that we built something pretty useful out of **nothing but rating data** – we didn’t look at any features of the products whatsoever.
But: we still have a few problems left to address...

1. This is actually kind of slow given a huge enough dataset – if one user purchases one item, this will change the rankings of every other item that was purchased by at least one user in common

2. Of no use for new users and new items (“cold-start” problems

3. Won’t necessarily encourage diverse results
CSE 258 – Lecture 7
Web Mining and Recommender Systems

Latent-factor models
Latent factor models

So far we’ve looked at approaches that try to define some definition of user/user and item/item similarity

Recommendation then consists of

- Finding an item i that a user likes (gives a high rating)
- Recommending items that are similar to it (i.e., items j with a similar rating profile to i)
What we’ve seen so far are \textbf{unsupervised} approaches and whether the work depends highly on whether we chose a “good” notion of similarity.

So, can we perform recommendations via \textbf{supervised} learning?
Latent factor models

e.g. if we can model

\[f(\text{user features, movie features}) \rightarrow \text{star rating} \]

Then recommendation will consist of identifying

\[
\text{recommendation}(u) = \arg \max_{i \in \text{unseen items}} f(u, i)
\]
The Netflix prize

In 2006, Netflix created a dataset of 100,000,000 movie ratings. Data looked like:

(userID, itemID, time, rating)

The goal was to reduce the (R)MSE at predicting ratings:

$$\text{RMSE}(f) = \sqrt{\frac{1}{N} \sum_{u,i,t \in \text{test set}} (f(u,i,t) - r_{u,i,t})^2}$$

Whoever first manages to reduce the RMSE by 10% versus Netflix’s solution wins $1,000,000.
The Netflix prize

This led to a lot of research on rating prediction by minimizing the Mean-Squared Error (it also led to a lawsuit against Netflix, once somebody managed to de-anonymize their data)

We’ll look at a few of the main approaches
Rating prediction

Let’s start with the simplest possible model:

\[f(u, i) = \alpha \]

\[\alpha = \frac{1}{N} \sum_{u,i \in R} R_{ui} \]

\[\text{RMSE} = \text{s.d.} \sqrt{\text{R}} \]
What about the 2nd simplest model?

\[f(u, i) = \alpha + \beta_u + \beta_i \]

- \(\alpha \): how much does this user tend to rate things above the mean?
- \(\beta_u \): does this item tend to receive higher ratings than others?
- \(\beta_i \): user
- \(\beta \): item

e.g.

\(\beta_{\text{pitch black}} = -0.1 \)

\(\beta_{\text{julian}} = -0.2 \)

\(\alpha = 4.2 \)
Rating prediction

\[f(u, i) = \alpha + \beta_u + \beta_i \]

This is a linear model!

\[f(u, i) = \langle \phi(u); \phi(i), \theta \rangle \]

\[\phi(u, i) = \begin{bmatrix} 1 & 0 & \cdots & 0 \end{bmatrix} \]

\[\theta = [\alpha \beta u \beta i] \]
The optimization problem becomes:

$$\arg\min_{\alpha, \beta} \sum_{u,i} (\alpha + \beta_u + \beta_i - R_{u,i})^2 + \lambda \left[\sum_u \beta_u^2 + \sum_i \beta_i^2 \right]$$

Jointly convex in β_i, β_u. Can be solved by iteratively removing the mean and solving for β.
Jointly convex?
Rating prediction

Differentiate:

\[\text{arg min}_{\alpha, \beta} \sum_{u,i} (\alpha + \beta_u + \beta_i - R_{u,i})^2 + \lambda \left[\sum_u \beta_u^2 + \sum_i \beta_i^2 \right] \]

\[\frac{\partial \text{obj}}{\partial \beta_u} \]

\[\sum_{i \in I_u} (\alpha + \beta_u + \beta_i - R_{u,i}) + 2 \lambda \beta_u \]

Solve for \(\beta_u \)

\[-\lambda \beta_u + \sum_{i \in I_u} \beta_u = \sum_{i \in I_u} (\alpha + \beta_u + \beta_i - R_{u,i}) \]

\[\beta_u = \frac{\sum_{i \in I_u} (\alpha + \beta_i - R_{u,i})}{\lambda + |I_u|} \]
Iterative procedure – repeat the following updates until convergence:

\[
\alpha^{(t)} = \frac{\sum_{u,i \in \text{train}} (R_{u,i} - (\beta_u + \beta_i))}{N_{\text{train}}}
\]

\[
\beta_u^{(t+1)} = \frac{\sum_{i \in I_u} R_{u,i} - (\alpha + \beta_i)}{\lambda + |I_u|}
\]

\[
\beta_i^{(t+1)} = \frac{\sum_{u \in U_i} R_{u,i} - (\alpha + \beta_u)}{\lambda + |U_i|}
\]

(exercise: write down derivatives and convince yourself of these update equations!)
One variable at a time or all at once?
Looks good (and actually works surprisingly well), but doesn’t solve the basic issue that we started with.

\[f(\text{user features}, \text{movie features}) = \]
\[= \langle \phi(\text{user features}), \theta_{\text{user}} \rangle + \langle \phi(\text{movie features}), \theta_{\text{movie}} \rangle \]

That is, we’re still fitting a function that treats users and items independently.
How about an approach based on dimensionality reduction?

i.e., let’s come up with low-dimensional representations of the users and the items so as to best explain the data.
We already have some tools that ought to help us, e.g. from week 3:

\[
R = \begin{pmatrix}
5 & 3 & \cdots & 1 \\
4 & 2 & & 1 \\
3 & 1 & & 3 \\
2 & 2 & & 4 \\
1 & 5 & & 2 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 2 & \cdots & 1
\end{pmatrix}
\]

What is the best low-rank approximation of \(R \) in terms of the mean-squared error?
Dimensionality reduction

We already have some tools that ought to help us, e.g. from week 3:

\[R = \begin{pmatrix}
5 & 3 & \cdots & 1 \\
4 & 2 & 1 & 1 \\
3 & 1 & 3 & \vdots \\
\vdots & \vdots & \ddots & \vdots \\
1 & 2 & \cdots & 1
\end{pmatrix} \]

The “best” rank-K approximation (in terms of the MSE) consists of taking the eigenvectors with the highest eigenvalues.

\[R = U \Sigma V^T \]

(square roots of)

eigenvalues of \(R R^T \)

eigenvectors of \(R R^T \)

eigenvectors of \(R^T R \)
But! Our matrix of ratings is only partially observed; and it’s **really big**!

\[
\begin{pmatrix}
5 & 3 & \cdots & . \\
4 & 2 & 1 \\
3 & \cdot & 3 \\
\cdot & 2 & 4 \\
1 & 5 & \cdot \\
\vdots & \cdot & \cdot & \cdot \\
1 & 2 & \cdots & .
\end{pmatrix}
\]

SVD is *not defined* for partially observed matrices, and it is **not practical** for matrices with 1Mx1M+ dimensions.
Latent-factor models

Instead, let’s solve approximately using gradient descent

\[
R = \begin{pmatrix}
5 & 3 & \cdots & . \\
4 & 2 & 1 & . \\
3 & . & 3 & . \\
. & 2 & . & 4 \\
1 & 5 & . & . \\
\vdots & \vdots & \ddots & \vdots \\
1 & 2 & \cdots & . \\
\end{pmatrix}
\]

K-dimensional representation of each item

K-dimensional representation of each user

\[
R \approx UV^T
\]
Latent-factor models

Let’s write this as:

\[f(u, i) = \alpha + \beta_u + \beta_i + \gamma_u \cdot \gamma_i \]
Latent-factor models

Let’s write this as:

\[f(u, i) = \alpha + \beta_u + \beta_i + \gamma_u \cdot \gamma_i \]

Our optimization problem is then

\[
\arg\min_{\alpha, \beta, \gamma} \sum_{u,i}(\alpha + \beta_u + \beta_i + \gamma_u \cdot \gamma_i - R_{u,i})^2 + \lambda \left[\sum_u \beta_u^2 + \sum_i \beta_i^2 + \sum_i \|\gamma_i\|_2^2 + \sum_u \|\gamma_u\|_2^2 \right]
\]

error \hspace{1cm} \text{regularizer}
Problem: this is certainly not convex
Latent-factor models

Oh well. We’ll just solve it approximately

Observation: if we know either the user or the item parameters, the problem becomes easy

\[f(u, i) = \alpha + \beta_u + \beta_i + \gamma_u \cdot \gamma_i \]

e.g. fix \(\gamma_i \) – pretend we’re fitting parameters for features
Latent-factor models

\[
\arg \min_{\alpha, \beta, \gamma} \sum_{u,i} (\alpha + \beta_u + \beta_i + \gamma_u \gamma_i - R_{u,i})^2 + \lambda \left[\sum_u \beta_u^2 + \sum_i \beta_i^2 + \sum_i \|\gamma_i\|_2^2 + \sum_u \|\gamma_u\|_2^2 \right]
\]
Latent-factor models

This gives rise to a simple (though approximate) solution

objective:

\[
\arg \min_{\alpha, \beta, \gamma} \sum_{u,i} (\alpha + \beta_u + \beta_i + \gamma_u \cdot \gamma_i - R_{u,i})^2 + \lambda \left[\sum_u \beta_u^2 + \sum_i \beta_i^2 + \sum_i \| \gamma_i \|^2_2 + \sum_u \| \gamma_u \|^2_2 \right]
\]

\[= \arg \min_{\alpha, \beta, \gamma} \text{objective}(\alpha, \beta, \gamma)\]

1) fix γ_i. Solve $\arg \min_{\alpha, \beta, \gamma_u} \text{objective}(\alpha, \beta, \gamma)$

2) fix γ_u. Solve $\arg \min_{\alpha, \beta, \gamma_i} \text{objective}(\alpha, \beta, \gamma)$

3,4,5...) repeat until convergence

Each of these subproblems is “easy” – just regularized least-squares, like we’ve been doing since week 1. This procedure is called **alternating least squares.**
Latent-factor models

Observation: we went from a method which uses **only** features:

\[f(\text{user features, movie features}) \rightarrow \text{star rating} \]

...to one which **completely ignores** them:

\[
\arg \min_{\alpha, \beta, \gamma} \sum_{u,i} (\alpha + \beta_u + \beta_i + \gamma_u \cdot \gamma_i - R_{u,i})^2 + \lambda \left[\sum_u \beta_u^2 + \sum_i \beta_i^2 + \sum_i ||\gamma_i||_2^2 + \sum_u ||\gamma_u||_2^2 \right]
\]
Should we use features or not?

1) Argument **against** features:

Imagine incorporating features into the model like:

\[
f(u, i) = \alpha + \beta_u + \beta_i + \gamma_u \cdot \gamma_i + \langle \phi(u), \theta_u \rangle + \langle \phi(i), \theta_i \rangle
\]

which is equivalent to:

\[
f(u, i) = \alpha + \beta_u + \beta_i + (\phi(u); \phi(i); \gamma_u) \cdot (\theta_u; \theta_i; \gamma_i)
\]

but this has fewer degrees of freedom than a model which replaces the knowns by unknowns:

\[
f(u, i) = \alpha + \beta_u + \beta_i + (\gamma'_i; \gamma'_u; \gamma_u) \cdot (\theta_u; \theta_i; \gamma_i)
\]
Latent-factor models

Should we use features or not?

1) Argument **against** features:

So, the addition of features adds **no expressive power** to the model. We **could** have a feature like “is this an action movie?”, but if this feature were useful, the model would “discover” a latent dimension corresponding to action movies, and we wouldn’t need the feature anyway.

In the limit, this argument is valid: as we add more ratings per user, and more ratings per item, the latent-factor model should automatically discover any useful dimensions of variation, so the influence of observed features will disappear.
Latent-factor models

Should we use features or not?

2) Argument **for** features:

But! Sometimes we **don’t** have many ratings per user/item

Latent-factor models are next-to-useless if **either** the user or the item was never observed before

\[f(u, i) = \alpha + \beta_u + \beta_i + \gamma_u \cdot \gamma_i \]

reverts to zero if we’ve never seen the user before (because of the regularizer)
Should we use features or not?

2) Argument for features:

This is known as the **cold-start** problem in recommender systems. Features are not useful if we have many observations about users/items, but are useful for **new** users and items.

We also need some way to handle users who are **active**, but don’t necessarily rate anything, e.g. through **implicit feedback**
Tonight we’ve followed the programme below:

1. Measuring similarity between users/items for **binary** prediction (e.g. Jaccard similarity)
2. Measuring similarity between users/items for **real-valued** prediction (e.g. cosine/Pearson similarity)
3. Dimensionality reduction for **real-valued** prediction (latent-factor models)
4. **Finally** – dimensionality reduction for **binary** prediction
One-class recommendation

How can we use dimensionality reduction to predict binary outcomes?

• In weeks 1&2 we saw regression and logistic regression. These two approaches use the same type of linear function to predict real-valued and binary outputs
• We can apply an analogous approach to binary recommendation tasks
This is referred to as “one-class” recommendation

• In weeks 1&2 we saw regression and logistic regression. These two approaches use the same type of linear function to predict real-valued and binary outputs
• We can apply an analogous approach to binary recommendation tasks
One-class recommendation

Suppose we have binary (0/1) observations (e.g. purchases) or positive/negative feedback (thumbs-up/down).

\[R = \begin{pmatrix} 1 & 0 & \cdots & 1 \\ 0 & 0 & 1 \\ \vdots & \ddots & \vdots \\ 1 & 0 & \cdots & 1 \end{pmatrix} \quad \text{or} \quad \begin{pmatrix} -1 & ? & \cdots & 1 \\ ? & ? & \cdots & -1 \\ \vdots & \ddots & \vdots \\ 1 & ? & \cdots & -1 \end{pmatrix} \]

- purchased
- didn’t purchase
- liked
- didn’t evaluate
- didn’t like
One-class recommendation

So far, we’ve been fitting functions of the form

$$R \approx UV^T$$

• Let’s change this so that we maximize the **difference** in predictions between positive and negative items
• E.g. for a user who likes an item i and dislikes an item j we want to maximize:

$$\max \ln \sigma(\gamma_u \cdot \gamma_i - \gamma_u \cdot \gamma_j)$$
One-class recommendation

We can think of this as maximizing the probability of correctly predicting pairwise preferences, i.e.,

\[p(i \text{ is preferred over } j) = \sigma(\gamma_u \cdot \gamma_i - \gamma_u \cdot \gamma_j) \]

- As with logistic regression, we can now maximize the likelihood associated with such a model by gradient ascent
- In practice it isn’t feasible to consider all pairs of positive/negative items, so we proceed by stochastic gradient ascent – i.e., randomly sample a (positive, negative) pair and update the model according to the gradient w.r.t. that pair
Recap

1. Measuring similarity between users/items for **binary** prediction

 Jaccard similarity

2. Measuring similarity between users/items for **real-valued** prediction

 cosine/Pearson similarity

3. Dimensionality reduction for **real-valued** prediction

 latent-factor models

4. Dimensionality reduction for **binary** prediction

 one-class recommender systems
Questions?

Further reading:

One-class recommendation:
http://goo.gl/08Rh59

Amazon’s solution to collaborative filtering at scale:

An (expensive) textbook about recommender systems:

Cold-start recommendation (e.g.):
http://wanlab.poly.edu/recsys12/recsys/p115.pdf