Problem 1 Petri Nets [15 pts]
Assume you have a Petri Net N, with P places, T transitions and F flows:

\[P = \{ P_0, P_1, P_2, P_3, P_4 \} \]
\[T = \{ T_0, T_1, T_2, T_3, T_4 \} \]
\[F = \{(P_0, T_0), (P_0, T_1), (P_1, T_2), (T_2, P_1), (T_1, P_2), (P_2, T_3), (P_3, T_4), (T_0, P_3), (T_2, P_3), (P_4, T_4), (T_3, P_4) \} \]

Initial marking \(M_0 = [1, 2, 0, 0, 0] \)

a) Draw the specified Petri Net.
b) Draw the reachability tree. Are states [0,1,1,1,0] and [1,1,0,0,0] reachable?
c) Is N pure?
d) What degree of liveness does N have?
Problem 2 SDL [5 pts]
Convert the following FSM into an equivalent SDL representation.
Problem 3 Finite State Machines and StateCharts [10 pts]

Consider the given StateChart with a superstate and shallow history.

a) Assume the system is restarted before each following question. Describe the system's state(s) at the end of each input sequence.
 i) \(y \rightarrow z \rightarrow u \rightarrow w \)
 ii) \(x \rightarrow y \rightarrow v \)
 iii) \(x \rightarrow y \rightarrow w \rightarrow z \rightarrow v \rightarrow x \rightarrow y \)
 iv) \(x \rightarrow y \rightarrow w \rightarrow v \rightarrow x \)

b) Draw the equivalent Finite State Machine.
Problem 4 Periodic task scheduling [15 pts]

You are given 4 periodic tasks to run on a single processor.

Task T_1 has execution time $C_1 = 2$ and period $P_1 = 8$
Task T_2 has execution time $C_2 = 1$ and period $P_2 = 10$
Task T_3 has execution time $C_3 = 3$ and period $P_3 = 10$
Task T_4 has execution time $C_4 = 7$ and period $P_4 = 25$

a) Are the four tasks EDF schedulable? You may use the Utilization Bound Test. Show your work.
b) Are the four tasks RM schedulable? You may need to use both Theorem 1 (Guaranteed Schedulability) and Theorem 2 (Exact Schedulability). Show your work.
c) Task 1 is modified to occur less frequently, such that $P_1 = 20$. Other tasks remain unchanged. Assume all tasks arrive at $t=0$. Show the EDF schedule for Tasks 1-4 until $t=39$.

<table>
<thead>
<tr>
<th>Time</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
<th>28</th>
<th>29</th>
<th>30</th>
<th>31</th>
<th>32</th>
<th>33</th>
<th>34</th>
<th>35</th>
<th>36</th>
<th>37</th>
<th>38</th>
<th>39</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task</td>
<td></td>
</tr>
</tbody>
</table>

d) Assume all tasks arrive at $t=0$. With $P_1 = 20$, show the RM schedule for Tasks 1-4 until $t=39$.

<table>
<thead>
<tr>
<th>Time</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
<th>28</th>
<th>29</th>
<th>30</th>
<th>31</th>
<th>32</th>
<th>33</th>
<th>34</th>
<th>35</th>
<th>36</th>
<th>37</th>
<th>38</th>
<th>39</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task</td>
<td></td>
</tr>
</tbody>
</table>
Problem 5 Dependent task scheduling [10 pts]

You are given a code segment as shown below:

1. \(x = i2 \cdot i3 \cdot i4; \)
2. \(y = i5 + i6; \)
3. \(z = x \cdot y; \)
4. \(w = i1 + i8; \)
5. \(o1 = w + z; \)
6. \(o2 = y - i7; \)
7. \(o3 = i8 \cdot i9; \)

a) Draw the task graph representing the dependencies in the code.
b) Show how the code can be scheduled with:
 i) ASAP (no resource constraint)
 ii) ALAP (no resource constraint)
 iii) List (Assume there are only 2 adders and 1 multipliers)
Problem 6 Real Time I/O [10 pts]

The Time-Triggered Protocol (TTP) is a high-speed, fault-tolerant communication network intended for safety critical applications.

a) The TTP/C variant is claimed to be more "fault tolerant" than the TTP/A variant. List three differences between TTP/C and TTP/A and explain how each one supports this characterization.

b) Is the Controller Area Network (CAN) bus event-triggered or time-triggered? Explain.

c) Is FlexRay event-triggered or time-triggered? Explain.

d) In general, what types of system/applications benefit from an event-triggered protocol over a time-triggered one?
Problem 7 RTOS [10 pts]

A real-time operating systems aims to remove many sources of unpredictability in terms of hardware and software interactions.

a) List 3 ways real-time tasks and interrupts are handled differently in RTLinux than in regular Linux.

b) Consider message passing vs. shared memory for processors that need to share data. Does one method guarantee a faster response time over the other? Why or why not?

c) What is priority inversion? What are two possible solutions for it? Briefly explain each one.