
CSE 158 – Lecture 5
Web Mining and Recommender Systems

Dimensionality Reduction



This week

How can we build low dimensional

representations of high 

dimensional data?

e.g. how might we (compactly!) represent

1. The ratings I gave to every movie I’ve watched?

2. The complete text of a document?

3. The set of my connections in a social network?



Dimensionality reduction

Q1: The ratings I 

gave to every 

movie I’ve watched
(or product I’ve purchased)

F_julian = [0.5, ?, 1.5, 2.5, ?, ?, … , 5.0]

A-team ABBA, the movie Zoolander

A1: A (sparse) vector including all movies



Dimensionality reduction

F_julian = [0.5, ?, 1.5, 2.5, ?, ?, … , 5.0]

A1: A (sparse) vector including all movies



Dimensionality reduction

A2: Describe my preferences using a 

low-dimensional vector

my (user’s)

“preferences”

e.g. Koren & Bell (2011)

HP’s (item) 

“properties”
preference

Toward

“action”

preference toward

“special effects”

Week 5/6!



Dimensionality reduction

Q2: How to represent the complete text 

of a document?

F_text = [150, 0, 0, 0, 0, 0, … , 0]

a aardvark zoetrope

A1: A (sparse) vector counting all words



Dimensionality reduction

F_text = [150, 0, 0, 0, 0, 0, … , 0]

A1: A (sparse) vector counting all words

Incredibly high-dimensional…
• Costly to store and manipulate

• Many dimensions encode essentially the same thing

• Many dimensions devoted to the “long tail” of obscure 

words (technical terminology, proper nouns etc.)



Dimensionality reduction

A2: A low-dimensional vector describing 

the topics in the document

topic

model

Action:
action, loud, fast, explosion,…

Document topics

(review of “The Chronicles of Riddick”)

Sci-fi
space, future, planet,…

Week 7!



Dimensionality reduction

Q3: How to represent connections 

in a social network?

A1: An adjacency 

matrix!



Dimensionality reduction

A1: An adjacency matrix

Seems almost reasonable, but…
• Becomes very large for real-world networks

• Very fine-grained – doesn’t straightforwardly encode 

which nodes are similar to each other



Dimensionality reduction

A2: Represent each node/user in terms 

of the communities they belong to

communities

f =

e.g. from a PPI network; Yang, McAuley, & Leskovec (2014)

f = [0,0,1,1]



Why dimensionality reduction?

Goal: take high-dimensional data, 

and describe it compactly using a 

small number of dimensions

Assumption: Data lies 

(approximately) on some low-

dimensional manifold
(a few dimensions of opinions, a small number of 

topics, or a small number of communities)



Why dimensionality reduction?

Unsupervised learning

• Today our goal is not to solve some specific 

predictive task, but rather to understand the 

important features of a dataset

• We are not trying to understand the process 

which generated labels from the data, but rather 

the process which generated the data itself



Why dimensionality reduction?

Unsupervised learning

• But! The models we learn will prove useful when it comes to 

solving predictive tasks later on, e.g.

• Q1: If we want to predict which users like which movies, we 

need to understand the important dimensions of opinions

• Q2: To estimate the category of a news article (sports, 

politics, etc.), we need to understand topics it discusses

• Q3: To predict who will be friends (or enemies), we need to 

understand the communities that people belong to



Today…

Dimensionality reduction, clustering, 

and community detection

• Principal Component Analysis

• K-means clustering

• Hierarchical clustering

• Next lecture: Community detection
• Graph cuts

• Clique percolation

• Network modularity



Principal Component Analysis

Principal Component Analysis (PCA) is 

one of the oldest (1901!) techniques to 

understand which dimensions of a high-

dimensional dataset are “important”

Why?

• To select a few important features

• To compress the data by ignoring 

components which aren’t meaningful



Principal Component Analysis

Motivating example:

Suppose we rate restaurants in terms of: 
[value, service, quality, ambience, overall]

• Which dimensions are highly correlated (and how)?

• Which dimensions could we “throw away” without losing 

much information?

• How can we find which dimensions can be thrown away 

automatically?

• In other words, how could we come up with a “compressed 

representation” of a person’s 5-d opinion into (say) 2-d?



Principal Component Analysis

Suppose our data/signal is an MxN matrix

M = number of features

(each column is a data point)

N = number of observations



Principal Component Analysis

We’d like (somehow) to recover this signal 

using as few dimensions as possible

signal compressed signal (K < M)

(approximate) process to recover 

signal from its compressed version



Principal Component Analysis

E.g. suppose we have the following data:

The data 

(roughly) lies 

along a line

Idea: if we know the position of the point on the line (1D),

we can approximately recover the original (2D) signal



Principal Component Analysis

But how to find the important dimensions?

Find a new basis for the data (i.e., rotate it) such that

• most of the variance is along x0,

• most of the “leftover” variance (not explained by x0) is along x1,

• most of the leftover variance (not explained by x0,x1) is along x2,

• etc.



Principal Component Analysis

But how to find the important dimensions?

• Given an input

• Find a basis



Principal Component Analysis

But how to find the important dimensions?

• Given an input

• Find a basis

• Such that when X is rotated
• Dimension with highest variance is y_0

• Dimension with 2nd highest variance is y_1

• Dimension with 3rd highest variance is y_2

• Etc.



Principal Component Analysis

rotate

discard lowest-

variance 

dimensions
un-rotate



Principal Component Analysis

For a single data point:



Principal Component Analysis



Principal Component Analysis

We want to fit the “best” reconstruction:

i.e., it should minimize the MSE:

“complete” reconstruction

approximate reconstruction



Principal Component Analysis

Simplify…



Principal Component Analysis

Expand…



Principal Component Analysis



Principal Component Analysis

Equal to the variance in 

the discarded dimensions



Principal Component Analysis

PCA: We want to keep the dimensions 

with the highest variance, and discard the 

dimensions with the lowest variance, in 

some sense to maximize the amount of 

“randomness” that gets preserved when 

we compress the data



Principal Component Analysis

(subject to    orthonormal)

Expand in terms of X

(subject to    orthonormal)



Principal Component Analysis

(subject to    orthonormal)

Lagrange multiplier

Lagrange multipliers:

Bishop appendix E



Principal Component Analysis

Solve:

(Cov(X) is symmetric)

• This expression can only be satisfied if phi_j and 

lambda_j are an eigenvectors/eigenvalues of the 

covariance matrix

• So to minimize the original expression we’d discard 

phi_j’s corresponding to the smallest eigenvalues



Principal Component Analysis

Moral of the story: if we want to 

optimally (in terms of the MSE) project 

some data into a low dimensional 

space, we should choose the projection 

by taking the eigenvectors

corresponding to the largest 

eigenvalues of the covariance matrix



Principal Component Analysis

Example 1:

What are the principal components of 

people’s opinions on beer?

(code available on)

http://jmcauley.ucsd.edu/cse158/code/week3.py

http://jmcauley.ucsd.edu/cse158/code/week3.py


Principal Component Analysis

Example 2:

What are the principal dimensions of 

image patches?

=(0.7,0.5,0.4,0.6,0.4,0.3,0.5,0.3,0.2)



Principal Component Analysis

Construct such vectors from 100,000 

patches from real images and run PCA:

Black and white:



Principal Component Analysis

Construct such vectors from 100,000 

patches from real images and run PCA:

Color:



Principal Component Analysis

From this we can 

build an algorithm 

to “denoise” images

Idea: image patches should be 

more like the high-eigenvalue 

components and less like the 

low-eigenvalue components

input output
McAuley et. al (2006)



Principal Component Analysis

• We want to find a low-dimensional  

representation that best compresses or 

“summarizes” our data

• To do this we’d like to keep the dimensions with 

the highest variance (we proved this), and 

discard dimensions with lower variance. 

Essentially we’d like to capture the aspects of 

the data that are “hardest” to predict, while 

discard the parts that are “easy” to predict

• This can be done by taking the eigenvectors of 

the covariance matrix (we didn’t prove this, but 

it’s right there in the slides)



CSE 158 – Lecture 5
Web Mining and Recommender Systems

Clustering – K-means



Clustering

Q: What would PCA do with this data?

A: Not much, variance is about equal 

in all dimensions



Clustering

But: The data are highly clustered

Idea: can we compactly 

describe the data in terms 

of cluster memberships?



K-means Clustering

cluster 3 cluster 4

cluster 1

cluster 2

1. Input is 

still a matrix 

of features:

2. Output is a 

list of cluster 

“centroids”:

3. From this we can 

describe each point in X 

by its cluster membership:

f = [0,0,1,0]
f = [0,0,0,1]



K-means Clustering

Given features (X) our 

goal is to choose K 

centroids (C) and cluster 

assignments (Y) so that 

the reconstruction error is 

minimized

Number of data points

Feature dimensionality

Number of clusters

(= sum of squared distances from assigned centroids)



K-means Clustering

Q: Can we solve this optimally?

A: No. This is (in general) an NP-Hard

optimization problem

See “NP-hardness of Euclidean 

sum-of-squares clustering”, 

Aloise et. Al (2009)



K-means Clustering

1. Initialize C (e.g. at random)

2. Do

3. Assign each X_i to its nearest centroid

4. Update each centroid to be the mean 

of points assigned to it

5. While (assignments change between iterations)

(also: reinitialize clusters at random should they become empty)

Greedy algorithm:



K-means Clustering

Further reading:
• K-medians: Replaces the mean with the 

meadian. Has the effect of minimizing the 

1-norm (rather than the 2-norm) distance

• Soft K-means: Replaces “hard” 

memberships to each cluster by a 

proportional membership to each cluster



CSE 158 – Lecture 5
Web Mining and Recommender Systems

Clustering – hierarchical clustering



Hierarchical clustering

Q: What if our clusters are hierarchical?

Level 1

Level 2



Hierarchical clustering

[0,1,0,0,0,0,0,0,0,0,0,0,0,0,1]

[0,1,0,0,0,0,0,0,0,0,0,0,0,0,1]

[0,1,0,0,0,0,0,0,0,0,0,0,0,1,0]

[0,0,1,0,0,0,0,0,0,0,0,1,0,0,0]

[0,0,1,0,0,0,0,0,0,0,0,1,0,0,0]

[0,0,1,0,0,0,0,0,0,0,1,0,0,0,0]

membership @

level 2

membership @

level 1

A: We’d like a representation that encodes that points 

have some features in common but not others

Q: What if our clusters are hierarchical?



Hierarchical clustering

Hierarchical (agglomerative) clustering

works by gradually fusing clusters whose 

points are closest together

Assign every point to its own cluster:

Clusters = [[1],[2],[3],[4],[5],[6],…,[N]]

While len(Clusters) > 1:

Compute the center of each cluster

Combine the two clusters with the nearest centers



Hierarchical clustering

If we keep track of the order in which 

clusters were merged, we can build a 

“hierarchy” of clusters

1 2 43 6 875

43 6 7

6 75

6 75 8

432

4321

6 75 84321

(“dendrogram”)



Hierarchical clustering

Splitting the dendrogram at different 

points defines cluster “levels” from which 

we can build our feature representation

1 2 43 6 875

43 6 7

6 75

6 75 8

432

4321

6 75 84321

Level 1

Level 2

Level 3

1: [0,0,0,0,1,0]

2: [0,0,1,0,1,0]

3: [1,0,1,0,1,0]

4: [1,0,1,0,1,0]

5: [0,0,0,1,0,1]

6: [0,1,0,1,0,1]

7: [0,1,0,1,0,1]

8: [0,0,0,0,0,1]

L1, L2, L3



Model selection

• Q: How to choose K in K-means?
(or:

• How to choose how many PCA dimensions to keep?

• How to choose at what position to “cut” our 

hierarchical clusters?

• (next week) how to choose how many communities 

to look for in a network)



Model selection

1) As a means of “compressing” our data
• Choose however many dimensions we can afford to 

obtain a given file size/compression ratio

• Keep adding dimensions until adding more no longer 

decreases the reconstruction error significantly

# of dimensions

M
S
E



Model selection

2) As a means of generating potentially 

useful features for some other predictive 

task (which is what we’re more interested 

in in a predictive analytics course!)
• Increasing the number of dimensions/number of 

clusters gives us additional features to work with, i.e., a 

longer feature vector

• In some settings, we may be running an algorithm 

whose complexity (either time or memory) scales with 

the feature dimensionality (such as we saw last week!); 

in this case we would just take however many 

dimensions we can afford



Model selection

• Otherwise, we should choose however many 

dimensions results in the best prediction performance 

on held out data

• Q: Why does this happen? i.e., why doesn’t the 

validation performance continue to improve with more 

dimensions

# of dimensions

M
S
E
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Questions?

Further reading:
• Ricardo Gutierrez-Osuna’s PCA slides (slightly more 

mathsy than mine):
http://research.cs.tamu.edu/prism/lectures/pr/pr_l9.pdf

• Relationship between PCA and K-means:
http://ranger.uta.edu/~chqding/papers/KmeansPCA1.pdf

http://ranger.uta.edu/~chqding/papers/Zha-Kmeans.pdf

http://ranger.uta.edu/~chqding/papers/KmeansPCA1.pdf
http://ranger.uta.edu/~chqding/papers/Zha-Kmeans.pdf

