CSE 158 — Lecture 5

Web Mining and Recommender Systems

Dimensionality Reduction




This week

How can we build low dimensional
representations of high
dimensional data?

e.g. how might we (compactly!) represent

1. Theratings | gave to every movie I've watched?
2.  The complete text of a document?

3.  The set of my connections in a social network?



Dimensionality reduction

Q1: The ratings |
ave to every

movie |'ve watched

(or product I've purchased)
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Dimensionality reduction

A1: A (sparse) vector including all movies
F_julian =[05,7,15,25,7, 7, ..,5.0]
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Dimensionality reduction

A2: Describe my preferences using a
low-dimensional vector

preference
Toward
"action”

Week 5/6!

preference toward

special effects e.g. Koren & Bell (2011)



Dimensionality reduction

Q2: How to represent the complete text
of a document?

The Peculiar Genius of Bjork

F_text = [150,0,0,0,0,0, ..., 0]
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Dimensionality reduction

A1: A (sparse) vector counting all words

F_text = [150,0,0,0,0,0, ..., 0]

Incredibly high-dimensional...

«  Costly to store and manipulate
 Many dimensions encode essentially the same thing
« Many dimensions devoted to the “long tail” of obscure
words (technical terminology, proper nouns etc.)



Dimensionality reduction

A2: A low-dimensional vector describing
the topics in the document

87 of 102 people found the following review helpful
Yoio'oo’c You keep what you kill, December 27, 2004
By Schtinky "Schtinky" (Washington State) - See all my reviews

This review is from: The Chronicles of Riddick {Widescreen Unrated Director's Cut) (DVD)

Even if I have to apologize to my Friends and Favorites, and my family, I have to

admit that I really liked this movie. It's a Sci-Fi movie with a "Mad Maxx" appeal to |C
that, while changing many things, left Riddick from ~Pitch Black' to be just Riddick. p
They did not change his attitude or soften him up or bring him out of his original
character, which was very pleasing to “Pitch Black' fans like myself.

model

First off, let me say that when playing the DVD, the
Convert or Fight, and no explanation of the choices.
I will mention off the bat that they are simply differen
menu has the very same options, simply different bac
either one and continue with the movie.

(review of “The Chronicles o IC

Sci-fi

space, future, planet,...

Action:
action, loud, fast, explosion,...



Dimensionality reduction

Q3: How to represent connections
In a soclial network?
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A1: An adjacency

A =

matrix!

1 0 - 1
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Dimensionality reduction

A1: An adjacency matrix

1 0 --- 1
0 0 1
A =
1 1 --- 1

Seems almost reasonable, but...
 Becomes very large for real-world networks
* Very fine-grained — doesn't straightforwardly encode
which nodes are similar to each other



Dimensionality reduction

A2: Represent each node/user in terms
of the communities they belong to

f= =
f=[00,1,1] = /}

e.g. from a PPl network; Yang, McAuley, & Leskovec (2014)



Why dimensionality reduction?

Goal: take high-dimensional data,
and describe it compactly using a
small number of dimensions

Assumption: Data lies
(approximately) on some low-

dimensional manifold ~<p/cc

(a few dimensions of opinions, a small number of
topics, or a small number of communities)



Why dimensionality reduction?

Unsupervised learning

« Today our goal is not to solve some specific
predictive task, but rather to understand the
important features of a dataset
«  We are not trying to understand the process
which generated labels from the data, but rather
the process which generated the data itself



Why dimensionality reduction?

Unsupervised learning

«  But! The models we learn will prove useful when it comes to
solving predictive tasks later on, e.g.

« Q1: If we want to predict which users like which movies, we
need to understand the important dimensions of opinions
« Q2: To estimate the category of a news article (sports,
politics, etc.), we need to understand topics it discusses
« Q3: To predict who will be friends (or enemies), we need to
understand the communities that people belong to



Dimensionality reduction, clustering,
and community detection

* Principal Component Analysis
» K-means clustering
» Hierarchical clustering

* Next lecture: Community detection

« Graph cuts
« Clique percolation
*  Network modularity



Principal Component Analysis

Principal Component Analysis (PCA) Is
one of the oldest (1901!) techniques to
understand which dimensions of a high-
dimensional dataset are “important”

Why?
* To select a few important features
» To compress the data by ignoring
components which aren't meaningful



Principal Component Analysis

Motivating example:

Suppose we rate restaurants in terms of:
[value, service, quality, ambience, overall]

« Which dimensions are highly correlated (and how)?
* Which dimensions could we “throw away” without losing
much information?
« How can we find which dimensions can be thrown away
automatically?
* |In other words, how could we come up with a “compressed
representation” of a person’s 5-d opinion into (say) 2-d?



Principal Component Analysis

Suppose our data/signal is an MxN matrix

N = number of observations

= M = number of features
(each column is a data point)
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Principal Component Analysis

We'd like (somehow) to recover this signal

using as few dimensions as possible
KAW‘”&MM th¢

signal compressed signal (K < M)

XERMXN YIERKXN

fY)Y~X

\

(approximate) process to recover
signal from its compressed version



Principal Component Analysis

E.g. suppose we have the following data:

The data
(roughly) lies
along a line

» L
|dea: if we know the position of t>\e point on the line (1D),
we can approximately recover the original (2D) signal




Principal Component Analysis

But how to find the important dimensions?

Find a new basis for the data (i.e., rotate it) such that

most of the variance is along x0,

most of the “leftover” variance (not explained by x0) is along x1,
most of the leftover variance (not explained by x0,x1) is along x2,
etc.



Principal Component Analysis

But how to find the important dimensions?

« Given an input X ¢ RM*¥
+ Find a basis ¢ e R"*Y




Principal Component Analysis

But how to find the important dimensions?

« Given an input X ¢ RM*¥
* Find a basis ¢ € RM*Y

* Such that when X is rotated (Y = pX)

Dimension with highest variance isy_0
Dimension with 2" highest variance is y_1
Dimension with 3" highest variance is y_2
Etc.



Principal Component Analysis

> _ °.. '. -;I-.::.‘,:“,?,{b'.-":“:,'-,.',‘3" .

discard lowest-
variance

e ¢ dimensions
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Principal Component Analysis

For a single data point: Yy = @xr X = 90_13/ — SOT?J

e
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Principal Component Analysis
M

= P1yY1 + Y2yY2 + ...+ PpmqYnpm = E :Sijj
j=1
m
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Principal Component Analysis

We want to fit the "best” reconstruction:

ZU:(,OTy xzzchjyj_I_ Z ©jb;
1=K+1

“complete” reconstruction y
Y
approximate reconstruction

l.e., it should minimize the MSE:
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Principal Component Analysis

1
min = )

Yy

Simplify...



Principal Component Analysis




Principal Component Analysis

min 3 > G

y J=K+1

ZDJ:%



Principal Component Analysis

Equal to the variance In
the discarded dimensions



Principal Component Analysis

PCA: We want to keep the dimensions
with the highest variance, and discard the
dimensions with the lowest variance, In
some sense to maximize the amount of
‘randomness” that gets preserved when
we compress the data



Principal Component Analysis

mm — E E — yj (subject to ¢ orthonormal)

Yy J= K"‘]- gt_ Cex

l Expand in terms of X

mm— Z i (X — X)(X — X)T

j =K+1 (subject to ¢ orthonormal)



Principal Component Analysis

Cov(X)
mm— E 903 X X)(X X) SOCJF
® J — K41 (subject to ¢ orthonormal)

4 -

Lagrange multiplier

o1
min > @iCov(X)pl — Aj(pje; — 1)
S Sy o

Lagrange multipliers:

Bishop appendix E




Principal Component Analysis

Solve: o/ (o'

0 & " e
90, Z %’COV(X)% — )\j(%‘%@j —1)=0
P oK1 |

(Cov(X) is symmetric)

'
2(Cov(X)p; —Ajpj) =0

« This expression can only be satisfied if phi_j and
lambda_j are an eigenvectors/eigenvalues of the
covariance matrix
« So to minimize the original expression we'd discard
phi_j's corresponding to the smallest eigenvalues



Principal Component Analysis

Moral of the story: if we want to
optimally (in terms of the MSE) project
some data into a low dimensional
space, we should choose the projection
by taking the eigenvectors
corresponding to the largest
eigenvalues of the covariance matrix



Principal Component Analysis

Example 1:
What are the principal components of
people’s opinions on beer?

(code available on)
http://jmcauley.ucsd.edu/cse158/code/week3.py



http://jmcauley.ucsd.edu/cse158/code/week3.py

Principal Component Analysis

Example 2:
What are the principal dimensions of
Image patches?

=(0.7,0.5,0.4,0.6,0.4,0.3,0.5,0.3,0.2)




Principal Component Analysis

Construct such vectors from 100,000
patches from real images and run PCA:

Black and white;

sl N=Ato




Principal Component Analysis

Construct such vectors from 100,000
patches from real images and run PCA:

Color:

E=EN =0
yUEERINRE
e Nl N O

F——r]
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Principal Component Analysis

From this we can
build an algorithm
to “denoise” images

ldea: image patches should be

more like the high-eigenvalue
components and less like the
low-eigenvalue components

output

McAuley et. al (2006)



Principal Component Analysis

« We want to find a low-dimensional
representation that best compresses or
“summarizes” our data

 To do this we'd like to keep the dimensions with
the highest variance (we proved this), and
discard dimensions with lower variance.
Essentially we'd like to capture the aspects of
the data that are "hardest” to predict, while
discard the parts that are “easy” to predict

 This can be done by taking the eigenvectors of
the covariance matrix (we didn’t prove this, but
it's right there in the slides)



CSE 158 — Lecture 5

Web Mining and Recommender Systems

Clustering — K-means




Clustering

Q: What would PCA do with this data?
A: Not much, variance Is about equal
| in all dimensions




Clustering

But: The data are highly clustered

L1
A

ldea: can we compactly
n describe the data in terms
W of cluster memberships?




K-means Clustering

1. Input is 2. Output is a

still a matrix list of cluster ,, centroids={ 5o ¢4
of features: “centroids”:
5 3 ... 1
/ 4 2 1 \
3 1 3
y_| 2 2 4
\/ 1 5 2
\1 9 ... 1}

m f =10,0,1,0]

3. From this we can f=10,0,0,1]
describe each pointin X Y =(1,2,4,3,4,2,4,2,2,3,3,2,1,1,3,...,2)
by its cluster membership:




K-means Clustering

Number of data points
Given features (X) our i N g
goal is to choose K X eR ‘
Centl‘OidS (C) and cluster Feature dimensionality
aSSignmentS (Y) so that Number of cIusters\
the reconstruction error is O c RExXM
minimized N
Ye{l...K}

2
2

reconstruction error = » . || X; — Cy,

(= sum of squared distances from assigned centroids)



K-means Clustering

Q: Can we solve this optimally?

minc,y Zz HX’& - C i %

A: No. This is (in general) an NP-Hard
optimization problem

See “NP-hardness of Euclidean

sum-of-squares clustering’,
Aloise et. Al (2009)




Greedy algorithm:

Initialize C (e.g. at random)
. D _ . 2

° y; = argming || X; — Cil|5
Update each centroid to be the mean (7k L §:¥J§(yi::k)){i

of points assigned to it — 22-45(y¢::k)
. While (assignments change between iterations) ¢

Assign each X 1 to its nearest centroid

(also: reinitialize clusters at random should they become empty)



K-means Clustering

Further reading:

« K-medians: Replaces the mean with the
meadian. Has the effect of minimizing the
1-norm (rather than the 2-norm) distance

« Soft K-means: Replaces “hard”
memberships to each cluster by a
proportional membership to each cluster




CSE 158 — Lecture 5

Web Mining and Recommender Systems

Clustering — hierarchical clustering




Hierarchical clustering

Q: What if our clusters are hierarchical?

<.

Level 1 a @
Level 2 @

&

G

i



Hierarchical clustering

Q: What if our clusters are hierarchical?

[OI1 IOIOIOIOIOIOIOIOIOIOIOIOI1]
[OI1 IOIOIOIOIOIOIOIOIOIOIOIOI1]
[0,1,0,0,0,0,0,0,0,0,0,0,0,1,0]

[0,0,1,0,0,0,0,0,0,0,0,1,0,0,0]
[0,0,1,0,0,0,0,0,0,0,0,1,0,0,0]

[0,0,1,0,0,0,0,0,0,0,1,0,0,0,0]
\ J\ J
1 |

membership @ membership @
level 2 level 1

A: We'd like a representation that encodes that points

have some features in common but not others



Hierarchical (agglomerative) clustering
works by gradually fusing clusters whose
points are closest together

Assign every polnt to its own cluster:
Clusters = [[1],[2],[3]1,104],[3],16],..,[N]]

While len (Clusters) > 1:
Compute the center of each cluster
Combine the two clusters with the nearest centers




Hierarchical clustering

If we keep track of the order in which
clusters were merged, we can build a
"hierarchy” of clusters

/8

6 7

2 3 56 7 ("dendrogram”)

\/

2 3 4 56 7 8

12 3 456 7 8



Hierarchical clustering

Splitting the dendrogram at different
points defines cluster “levels” from which
we can build our feature representation

L1, L2, L3
1: [gf?),gf?),qf?)]
2:0,0,1,0,1,0]
3:11,0,1,0,1,0]
4:11,0,1,0,1,0]
5:10,0,0,1,0,1]
6:[0,1,0,1,0,1]
7:10,1,0,1,0,1]
8:[0,0,0,0,0,1]

Level 1

Level 2

M Level 3

—

~=




Model selection

* Q: How to choose K in K-means?

(or:
« How to choose how many PCA dimensions to keep?
* How to choose at what position to “cut” our
hierarchical clusters?
* (next week) how to choose how many communities
to look for in a network)



Model selection

1) As a means of “compressing” our data

. Choose however many dimensions we can afford to
obtain a given file size/compression ratio
. Keep adding dimensions until adding more no longer

decreases the reconstruction error significantly

MSE

# of dimensions



Model selection

2) As a means of generating potentially
useful features for some other predictive
task (which is what we're more interested
In In a predictive analytics course!)

* Increasing the number of dimensions/number of
clusters gives us additional features to work with, i.e, a
longer feature vector

* In some settings, we may be running an algorithm
whose complexity (either time or memory) scales with
the feature dimensionality (such as we saw last week!);
in this case we would just take however many
dimensions we can afford



Model selection

*  Otherwise, we should choose however many
dimensions results in the best prediction performance
on held out data

[
»

MSE (on training set)
MSE (on validation set)

v

# of dimensions # of dimensions

Q: Why does this happen? i.e., why doesn’t the
validation performance continue to improve with more
dimensions



Questions?

Further reading:

 Ricardo Gutierrez-Osuna’s PCA slides (slightly more

mathsy than mine):
http://research.cs.tamu.edu/prism/lectures/pr/pr_19.pdf

 Relationship between PCA and K-means:



http://ranger.uta.edu/~chqding/papers/KmeansPCA1.pdf
http://ranger.uta.edu/~chqding/papers/Zha-Kmeans.pdf

