
CSE 158 – Lecture 4
Web Mining and Recommender Systems

More Classifiers



Last lecture…

How can we predict binary or 

categorical variables?

{0,1}, {True, False}

{1, … , N}



Last lecture…

Will I purchase

this product?

(yes)

Will I click on

this ad?

(no)



Last lecture…

• Naïve Bayes
• Probabilistic model (fits                     )

• Makes a conditional independence assumption of 

the form                                           allowing us to 

define the model by computing                           

for each feature

• Simple to compute just by counting

• Logistic Regression
• Fixes the “double counting” problem present in 

naïve Bayes

• SVMs
• Non-probabilistic: optimizes the classification 

error rather than the likelihood



1) Naïve Bayes

posterior prior likelihood

evidence

due to our conditional independence assumption:



2) logistic regression

sigmoid function:

Classification 

boundary



Logistic regression

• Logistic regressors don’t optimize 

the number of “mistakes”

• No special attention is paid to the 

“difficult” instances – every instance 

influences the model

• But “easy” instances can affect the 

model (and in a bad way!)

• How can we develop a classifier that 

optimizes the number of mislabeled 

examples?



3) Support Vector Machines

Try to optimize the misclassification error

rather than maximize a probability

a

positive 

examples

negative 

examples



Support Vector Machines

This is essentially the intuition behind Support Vector 

Machines (SVMs) – train a classifier that focuses on the 

“difficult” examples by minimizing the misclassification error

We still want a classifier of the form

But we want to minimize the number of misclassifications:



Support Vector Machines



Support Vector Machines

a

Simple (seperable) case: there exists a perfect classifier



Support Vector Machines

The classifier is defined by the hyperplane



Support Vector Machines

Q: Is one of these classifiers preferable over the others?



Support Vector Machines

d

A: Choose the classifier that maximizes 

the distance to the nearest point



Support Vector Machines

Distance from a point to a line?



Support Vector Machines

such that

“support vectors”



Support Vector Machines

such that

This is known as a 

“quadratic program” (QP) 

and can be solved using 

“standard” techniques

See e.g. Nocedal & Wright (“Numerical Optimization”), 2006



Support Vector Machines

But: is finding such a separating 

hyperplane even possible?



Support Vector Machines

Or: is it actually a good idea?



Support Vector Machines

Want the margin to be as wide as possible

While penalizing points on the wrong side of it



Support Vector Machines

such that

Soft-margin formulation:



Pros/cons

• Naïve Bayes
++ Easiest to implement, most efficient to “train”

++ If we have a process that generates feature that are

independent given the label, it’s a very sensible idea

-- Otherwise it suffers from a “double-counting” issue

• Logistic Regression
++ Fixes the “double counting” problem present in 

naïve Bayes

-- More expensive to train

• SVMs
++ Non-probabilistic: optimizes the classification error 

rather than the likelihood

-- More expensive to train



Judging a book by its cover

[0.723845, 0.153926, 0.757238, 0.983643, … ]

4096-dimensional image features

Images features are available for each book on
http://jmcauley.ucsd.edu/cse158/data/amazon/book_images_5000.json

http://caffe.berkeleyvision.org/

http://jmcauley.ucsd.edu/cse158/data/amazon/book_images_5000.json


Judging a book by its cover

Example: train an SVM to predict 

whether a book is a children’s 

book from its cover art

(code available on)

http://jmcauley.ucsd.edu/cse158/code/week2.py

http://jmcauley.ucsd.edu/cse158/code/week2.py


Judging a book by its cover

• The number of errors we 

made was extremely low, yet 

our classifier doesn’t seem to 

be very good – why?



CSE 158 – Lecture 4
Web Mining and Recommender Systems

Evaluating Classifiers



Which of these classifiers is best?

a b



Which of these classifiers is best?

The solution which minimizes the 

#errors may not be the best one



Which of these classifiers is best?

1. When data are highly imbalanced
If there are far fewer positive examples than negative 

examples we may want to assign additional weight to 

negative instances (or vice versa)

e.g. will I purchase a 

product? If I 

purchase 0.00001% 

of products, then a 

classifier which just 

predicts “no” 

everywhere is 

99.99999% accurate, 

but not very useful



Which of these classifiers is best?

2. When mistakes are more costly in 

one direction
False positives are nuisances but false negatives are 

disastrous (or vice versa)

e.g. which of these bags contains a weapon?



Which of these classifiers is best?

3. When we only care about the 

“most confident” predictions

e.g. does a relevant 

result appear 

among the first 

page of results?



Evaluating classifiers

decision boundary

positivenegative



Evaluating classifiers

decision boundary

positivenegative

TP (true positive): Labeled as positive, predicted as positive



Evaluating classifiers

decision boundary

positivenegative

TN (true negative): Labeled as negative, predicted as negative



Evaluating classifiers

decision boundary

positivenegative

FP (false positive): Labeled as negative, predicted as positive



Evaluating classifiers

decision boundary

positivenegative

FN (false negative): Labeled as positive, predicted as negative



Evaluating classifiers

Label

true false

Prediction

true

false

true 

positive

false 

positive

false 

negative

true 

negative

Classification accuracy = correct predictions / #predictions

=

Error rate = incorrect predictions / #predictions

=



Evaluating classifiers

Label

true false

Prediction

true

false

true 

positive

false 

positive

false 

negative

true 

negative

True positive rate (TPR) = true positives / #labeled positive

=

True negative rate (TNR) = true negatives / #labeled negative

=



Evaluating classifiers

Label

true false

Prediction

true

false

true 

positive

false 

positive

false 

negative

true 

negative

Balanced Error Rate (BER) = ½ (FPR + FNR)

= ½ for a random/naïve classifier, 0 for a perfect classifier



Evaluating classifiers
e.g.

y = [  1, -1,   1,   1,  1, -1,  1,  1,  -1,  1]

Confidence = [1.3,-0.2,-0.1,-0.4,1.4,0.1,0.8,0.6,-0.8,1.0]



Evaluating classifiers

How to optimize a balanced error measure:



Evaluating classifiers – ranking

The classifiers we’ve seen can 

associate scores with each prediction
decision boundary

positivenegative

furthest from decision 

boundary in negative direction 

= lowest score/least confident

furthest from decision 

boundary in positive direction 

= highest score/most confident



Evaluating classifiers – ranking

The classifiers we’ve seen can 

associate scores with each prediction

• In ranking settings, the actual labels assigned to the 

points (i.e., which side of the decision boundary they 

lie on) don’t matter

• All that matters is that positively labeled points tend 

to be at higher ranks than negative ones



Evaluating classifiers – ranking

The classifiers we’ve seen can 

associate scores with each prediction

• For naïve Bayes, the “score” is the ratio between an 

item having a positive or negative class

• For logistic regression, the “score” is just the 

probability associated with the label being 1

• For Support Vector Machines, the score is the 

distance of the item from the decision boundary 

(together with the sign indicating what side it’s on)



Evaluating classifiers – ranking

The classifiers we’ve seen can 

associate scores with each prediction

e.g.
y = [  1, -1,   1,   1,  1, -1,  1,  1,  -1,  1]

Confidence = [1.3,-0.2,-0.1,-0.4,1.4,0.1,0.8,0.6,-0.8,1.0]

Sort both according to confidence:



Evaluating classifiers – ranking

The classifiers we’ve seen can 

associate scores with each prediction

[1, 1, 1, 1, 1, -1, 1, -1, 1, -1]

Labels sorted by confidence:

Suppose we have a fixed budget (say, six) of items that we can return

(e.g. we have space for six results in an interface)

• Total number of relevant items = 

• Number of items we returned = 

• Number of relevant items we returned = 



Evaluating classifiers – ranking

The classifiers we’ve seen can 

associate scores with each prediction

“fraction of retrieved documents that are relevant”

“fraction of relevant documents that were retrieved”



Evaluating classifiers – ranking

The classifiers we’ve seen can 

associate scores with each prediction

= precision when we have a budget 

of k retrieved documents

e.g.

• Total number of relevant items = 7

• Number of items we returned = 6

• Number of relevant items we returned = 5

precision@6 = 



Evaluating classifiers – ranking

The classifiers we’ve seen can 

associate scores with each prediction

(harmonic mean of precision and recall)

(weighted, in case precision is more important 

(low beta), or recall is more important (high beta))



Precision/recall curves

How does our classifier behave as we 

“increase the budget” of the number 

retrieved items?

• For budgets of size 1 to N, compute the precision and recall

• Plot the precision against the recall

recall

p
re

ci
si

o
n



Summary

1. When data are highly imbalanced
If there are far fewer positive examples than negative 

examples we may want to assign additional weight to 

negative instances (or vice versa)

e.g. will I purchase a 

product? If I 

purchase 0.00001% 

of products, then a 

classifier which just 

predicts “no” 

everywhere is 

99.99999% accurate, 

but not very useful

Compute the true positive rate 

and true negative rate, and the 

F_1 score



Summary

2. When mistakes are more costly in 

one direction
False positives are nuisances but false negatives are 

disastrous (or vice versa)

e.g. which of these bags contains a weapon?

Compute “weighted” error 

measures that trade-off the 

precision and the recall, like the 

F_\beta score



Summary

3. When we only care about the 

“most confident” predictions

e.g. does a relevant 

result appear 

among the first 

page of results?

Compute the precision@k, and 

plot the signature of precision 

versus recall



So far: Regression

How can we use features such as product properties and 

user demographics to make predictions about real-valued

outcomes (e.g. star ratings)?

How can we 

prevent our 

models from 

overfitting by 

favouring simpler 

models over more 

complex ones?

How can we 

assess our 

decision to 

optimize a 

particular error 

measure, like the 

MSE?



So far: Classification

Next we 

adapted 

these ideas 

to binary or 

multiclass

outputs
What animal is 

in this image?

Will I purchase

this product?

Will I click on

this ad?

Combining features 

using naïve Bayes models Logistic regression Support vector machines



So far: supervised learning

Given labeled training data of the form

Infer the function



So far: supervised learning

We’ve looked at two types of 

prediction algorithms:

Regression

Classification



Questions?

Further reading:
• “Cheat sheet” of performance evaluation measures: 

http://www.damienfrancois.be/blog/files/modelperfcheatsheet.pdf

• Andrew Zisserman’s SVM slides, focused on 

computer vision:
http://www.robots.ox.ac.uk/~az/lectures/ml/lect2.pdf


