
CSE 158 – Lecture 4
Web Mining and Recommender Systems

More Classifiers

Last lecture…

How can we predict binary or

categorical variables?

{0,1}, {True, False}

{1, … , N}

Last lecture…

Will I purchase

this product?

(yes)

Will I click on

this ad?

(no)

Last lecture…

• Naïve Bayes
• Probabilistic model (fits)

• Makes a conditional independence assumption of

the form allowing us to

define the model by computing

for each feature

• Simple to compute just by counting

• Logistic Regression
• Fixes the “double counting” problem present in

naïve Bayes

• SVMs
• Non-probabilistic: optimizes the classification

error rather than the likelihood

1) Naïve Bayes

posterior prior likelihood

evidence

due to our conditional independence assumption:

2) logistic regression

sigmoid function:

Classification

boundary

Logistic regression

• Logistic regressors don’t optimize

the number of “mistakes”

• No special attention is paid to the

“difficult” instances – every instance

influences the model

• But “easy” instances can affect the

model (and in a bad way!)

• How can we develop a classifier that

optimizes the number of mislabeled

examples?

3) Support Vector Machines

Try to optimize the misclassification error

rather than maximize a probability

a

positive

examples

negative

examples

Support Vector Machines

This is essentially the intuition behind Support Vector

Machines (SVMs) – train a classifier that focuses on the

“difficult” examples by minimizing the misclassification error

We still want a classifier of the form

But we want to minimize the number of misclassifications:

Support Vector Machines

Support Vector Machines

a

Simple (seperable) case: there exists a perfect classifier

Support Vector Machines

The classifier is defined by the hyperplane

Support Vector Machines

Q: Is one of these classifiers preferable over the others?

Support Vector Machines

d

A: Choose the classifier that maximizes

the distance to the nearest point

Support Vector Machines

Distance from a point to a line?

Support Vector Machines

such that

“support vectors”

Support Vector Machines

such that

This is known as a

“quadratic program” (QP)

and can be solved using

“standard” techniques

See e.g. Nocedal & Wright (“Numerical Optimization”), 2006

Support Vector Machines

But: is finding such a separating

hyperplane even possible?

Support Vector Machines

Or: is it actually a good idea?

Support Vector Machines

Want the margin to be as wide as possible

While penalizing points on the wrong side of it

Support Vector Machines

such that

Soft-margin formulation:

Pros/cons

• Naïve Bayes
++ Easiest to implement, most efficient to “train”

++ If we have a process that generates feature that are

independent given the label, it’s a very sensible idea

-- Otherwise it suffers from a “double-counting” issue

• Logistic Regression
++ Fixes the “double counting” problem present in

naïve Bayes

-- More expensive to train

• SVMs
++ Non-probabilistic: optimizes the classification error

rather than the likelihood

-- More expensive to train

Judging a book by its cover

[0.723845, 0.153926, 0.757238, 0.983643, …]

4096-dimensional image features

Images features are available for each book on
http://jmcauley.ucsd.edu/cse158/data/amazon/book_images_5000.json

http://caffe.berkeleyvision.org/

http://jmcauley.ucsd.edu/cse158/data/amazon/book_images_5000.json

Judging a book by its cover

Example: train an SVM to predict

whether a book is a children’s

book from its cover art

(code available on)

http://jmcauley.ucsd.edu/cse158/code/week2.py

http://jmcauley.ucsd.edu/cse158/code/week2.py

Judging a book by its cover

• The number of errors we

made was extremely low, yet

our classifier doesn’t seem to

be very good – why?

CSE 158 – Lecture 4
Web Mining and Recommender Systems

Evaluating Classifiers

Which of these classifiers is best?

a b

Which of these classifiers is best?

The solution which minimizes the

#errors may not be the best one

Which of these classifiers is best?

1. When data are highly imbalanced
If there are far fewer positive examples than negative

examples we may want to assign additional weight to

negative instances (or vice versa)

e.g. will I purchase a

product? If I

purchase 0.00001%

of products, then a

classifier which just

predicts “no”

everywhere is

99.99999% accurate,

but not very useful

Which of these classifiers is best?

2. When mistakes are more costly in

one direction
False positives are nuisances but false negatives are

disastrous (or vice versa)

e.g. which of these bags contains a weapon?

Which of these classifiers is best?

3. When we only care about the

“most confident” predictions

e.g. does a relevant

result appear

among the first

page of results?

Evaluating classifiers

decision boundary

positivenegative

Evaluating classifiers

decision boundary

positivenegative

TP (true positive): Labeled as positive, predicted as positive

Evaluating classifiers

decision boundary

positivenegative

TN (true negative): Labeled as negative, predicted as negative

Evaluating classifiers

decision boundary

positivenegative

FP (false positive): Labeled as negative, predicted as positive

Evaluating classifiers

decision boundary

positivenegative

FN (false negative): Labeled as positive, predicted as negative

Evaluating classifiers

Label

true false

Prediction

true

false

true

positive

false

positive

false

negative

true

negative

Classification accuracy = correct predictions / #predictions

=

Error rate = incorrect predictions / #predictions

=

Evaluating classifiers

Label

true false

Prediction

true

false

true

positive

false

positive

false

negative

true

negative

True positive rate (TPR) = true positives / #labeled positive

=

True negative rate (TNR) = true negatives / #labeled negative

=

Evaluating classifiers

Label

true false

Prediction

true

false

true

positive

false

positive

false

negative

true

negative

Balanced Error Rate (BER) = ½ (FPR + FNR)

= ½ for a random/naïve classifier, 0 for a perfect classifier

Evaluating classifiers
e.g.

y = [1, -1, 1, 1, 1, -1, 1, 1, -1, 1]

Confidence = [1.3,-0.2,-0.1,-0.4,1.4,0.1,0.8,0.6,-0.8,1.0]

Evaluating classifiers

How to optimize a balanced error measure:

Evaluating classifiers – ranking

The classifiers we’ve seen can

associate scores with each prediction
decision boundary

positivenegative

furthest from decision

boundary in negative direction

= lowest score/least confident

furthest from decision

boundary in positive direction

= highest score/most confident

Evaluating classifiers – ranking

The classifiers we’ve seen can

associate scores with each prediction

• In ranking settings, the actual labels assigned to the

points (i.e., which side of the decision boundary they

lie on) don’t matter

• All that matters is that positively labeled points tend

to be at higher ranks than negative ones

Evaluating classifiers – ranking

The classifiers we’ve seen can

associate scores with each prediction

• For naïve Bayes, the “score” is the ratio between an

item having a positive or negative class

• For logistic regression, the “score” is just the

probability associated with the label being 1

• For Support Vector Machines, the score is the

distance of the item from the decision boundary

(together with the sign indicating what side it’s on)

Evaluating classifiers – ranking

The classifiers we’ve seen can

associate scores with each prediction

e.g.
y = [1, -1, 1, 1, 1, -1, 1, 1, -1, 1]

Confidence = [1.3,-0.2,-0.1,-0.4,1.4,0.1,0.8,0.6,-0.8,1.0]

Sort both according to confidence:

Evaluating classifiers – ranking

The classifiers we’ve seen can

associate scores with each prediction

[1, 1, 1, 1, 1, -1, 1, -1, 1, -1]

Labels sorted by confidence:

Suppose we have a fixed budget (say, six) of items that we can return

(e.g. we have space for six results in an interface)

• Total number of relevant items =

• Number of items we returned =

• Number of relevant items we returned =

Evaluating classifiers – ranking

The classifiers we’ve seen can

associate scores with each prediction

“fraction of retrieved documents that are relevant”

“fraction of relevant documents that were retrieved”

Evaluating classifiers – ranking

The classifiers we’ve seen can

associate scores with each prediction

= precision when we have a budget

of k retrieved documents

e.g.

• Total number of relevant items = 7

• Number of items we returned = 6

• Number of relevant items we returned = 5

precision@6 =

Evaluating classifiers – ranking

The classifiers we’ve seen can

associate scores with each prediction

(harmonic mean of precision and recall)

(weighted, in case precision is more important

(low beta), or recall is more important (high beta))

Precision/recall curves

How does our classifier behave as we

“increase the budget” of the number

retrieved items?

• For budgets of size 1 to N, compute the precision and recall

• Plot the precision against the recall

recall

p
re

ci
si

o
n

Summary

1. When data are highly imbalanced
If there are far fewer positive examples than negative

examples we may want to assign additional weight to

negative instances (or vice versa)

e.g. will I purchase a

product? If I

purchase 0.00001%

of products, then a

classifier which just

predicts “no”

everywhere is

99.99999% accurate,

but not very useful

Compute the true positive rate

and true negative rate, and the

F_1 score

Summary

2. When mistakes are more costly in

one direction
False positives are nuisances but false negatives are

disastrous (or vice versa)

e.g. which of these bags contains a weapon?

Compute “weighted” error

measures that trade-off the

precision and the recall, like the

F_\beta score

Summary

3. When we only care about the

“most confident” predictions

e.g. does a relevant

result appear

among the first

page of results?

Compute the precision@k, and

plot the signature of precision

versus recall

So far: Regression

How can we use features such as product properties and

user demographics to make predictions about real-valued

outcomes (e.g. star ratings)?

How can we

prevent our

models from

overfitting by

favouring simpler

models over more

complex ones?

How can we

assess our

decision to

optimize a

particular error

measure, like the

MSE?

So far: Classification

Next we

adapted

these ideas

to binary or

multiclass

outputs
What animal is

in this image?

Will I purchase

this product?

Will I click on

this ad?

Combining features

using naïve Bayes models Logistic regression Support vector machines

So far: supervised learning

Given labeled training data of the form

Infer the function

So far: supervised learning

We’ve looked at two types of

prediction algorithms:

Regression

Classification

Questions?

Further reading:
• “Cheat sheet” of performance evaluation measures:

http://www.damienfrancois.be/blog/files/modelperfcheatsheet.pdf

• Andrew Zisserman’s SVM slides, focused on

computer vision:
http://www.robots.ox.ac.uk/~az/lectures/ml/lect2.pdf

