CSE 158 — Lecture 17 Web Mining and Recommender Systems

More temporal dynamics

This week

Temporal models

This week we'll look back on some of the topics already covered in this class, and see how they can be adapted to make use of **temporal** information

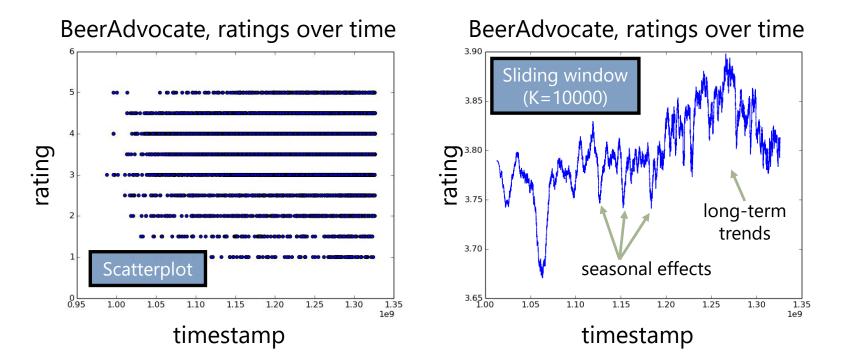
- Regression sliding windows and autoregression
 Classification dynamic time-warping
 Dimensionality reduction ?
- 4. Recommender systems some results from Koren

Today:

- 1. Text mining "Topics over Time"
- 2. Social networks densification over time

Monday: Time-series regression

Also useful to plot data:

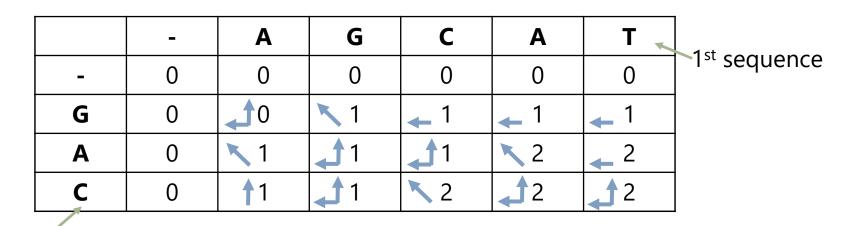


Code on: http://jmcauley.ucsd.edu/cse258/code/week10.py

Monday: Time-series classification

As you recall...

The longest-common subsequence algorithm is a standard dynamic programming problem



2nd sequence

= optimal move is to delete from 1st sequence
 = optimal move is to delete from 2nd sequence

- = either deletion is equally optimal
- = optimal move is a match

Monday: Temporal recommendation

To build a reliable system (and to win the Netflix prize!) we need to account for **temporal dynamics**:

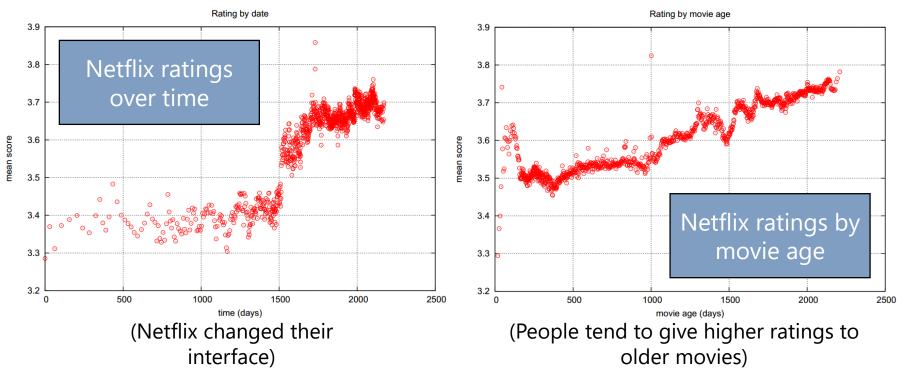


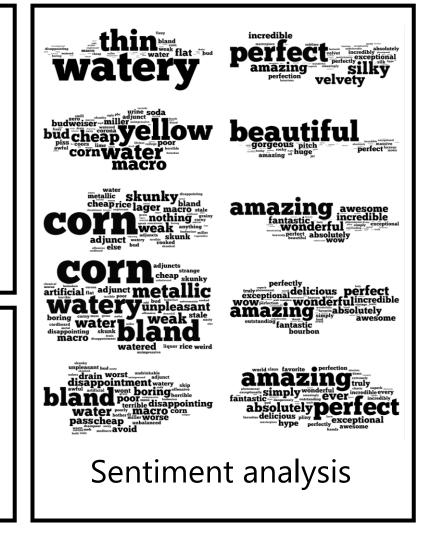
Figure from Koren: "Collaborative Filtering with Temporal Dynamics" (KDD 2009)

Week 5/7: Text

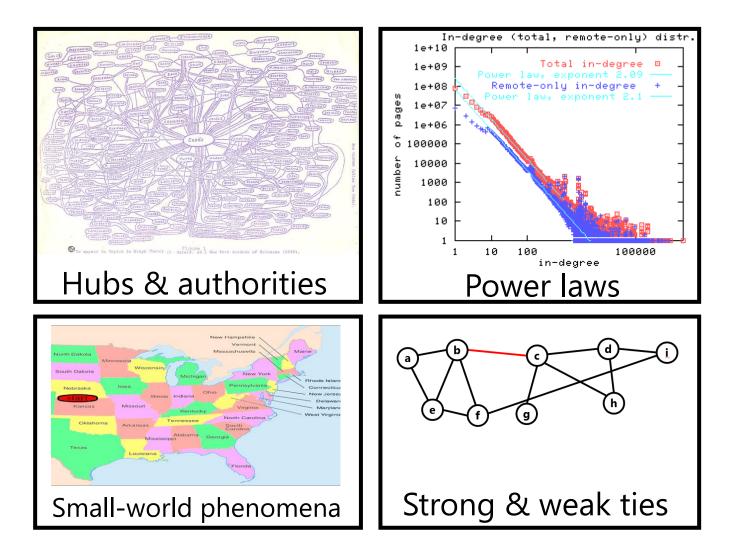
yeast and minimal red body thick light a Flavor sugar strong quad. grape over is molasses lace the low and caramel fruit Minimal start and toffee. dark plum, dark brown Actually, alcohol Dark oak, nice vanilla, has brown of a with presence. light carbonation. bready from retention. with finish. with and this and plum and head, fruit, low a Excellent raisin aroma Medium tan

Bags-of-Words

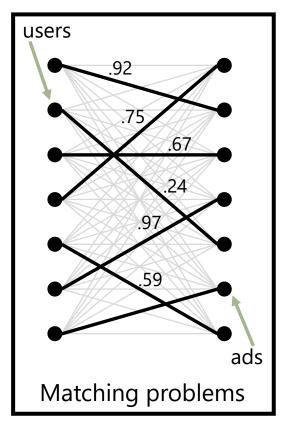
What we would like: **Document** topics 87 of 102 people found the following review helpful ***** You keep what you kill, December 27, 200 By Schtinky "Schtinky" (Washington State) - See all my reviews The reveals of them are Linearcons at Assess Construction and Favorites, and my family. I have to admit that I really liked this movie. It's a Sci-Fi movie with a "Mad Maxu" appeal that, while changing many things, left Riddick from 'Pitch Black' to be just Riddick They did not change his attluced or soften him up or bring him out of his original topic model aracter, which was very pleasing to 'Pitch Black' fans like myself rst off, let me say that when playing the DVD, the first selection to come up is onvert or Fight, and no explanation of the choices. This confused me at first, s will mention off the bat that they are simply different menu formats, that each enu has the very same options, simply different background visuals. Select ther one and continue with the movie. (review of "The Chronicles of Riddick") Sci-fi Action: space, future, planet... action, loud, fast, explosion,.. Topic models



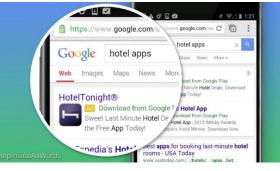
8. Social networks



9. Advertising



AdWords



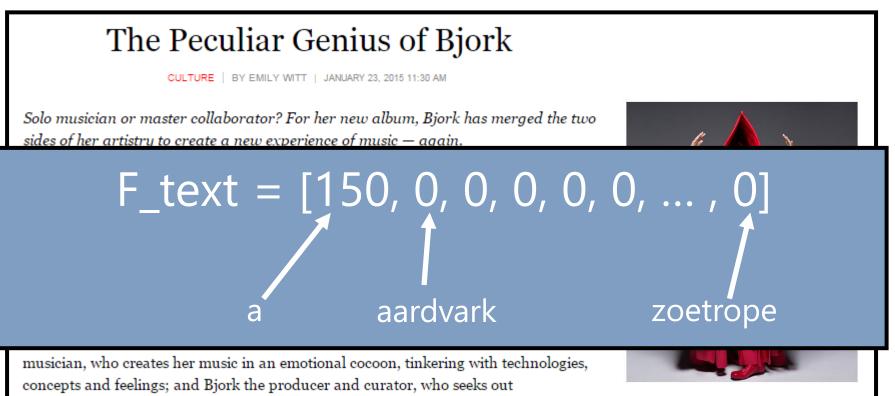
Bandit algorithms

CSE 158 – Lecture 17 Web Mining and Recommender Systems

Temporal dynamics of text

Week 5/7

Bag-of-Words representations of text:



In week 5/7, we tried to develop lowdimensional representations of documents:

What we would like:

87 of 102 people found the following review helpful

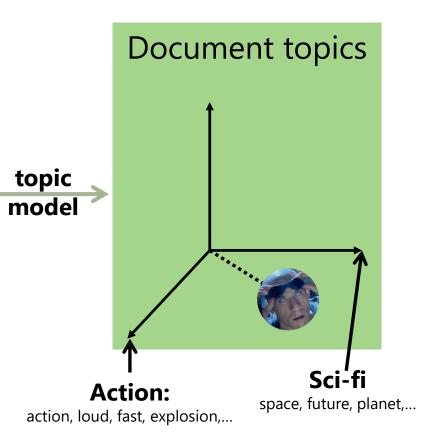
***** You keep what you kill, December 27, 2004

By <u>Schtinky "Schtinky"</u> (Washington State) - <u>See all my reviews</u>

This review is from: The Chronicles of Riddick (Widescreen Unrated Director's Cut) (DVD)

Even if I have to apologize to my Friends and Favorites, and my family, I have to admit that I really liked this movie. It's a Sci-Fi movie with a "Mad Maxx" appeal that, while changing many things, left Riddick from `Pitch Black' to be just Riddick. They did not change his attitude or soften him up or bring him out of his original character, which was very pleasing to `Pitch Black' fans like myself.

First off, let me say that when playing the DVD, the first selection to come up is Convert or Fight, and no explanation of the choices. This confused me at first, so I will mention off the bat that they are simply different menu formats, that each menu has the very same options, simply different background visuals. Select either one and continue with the movie.

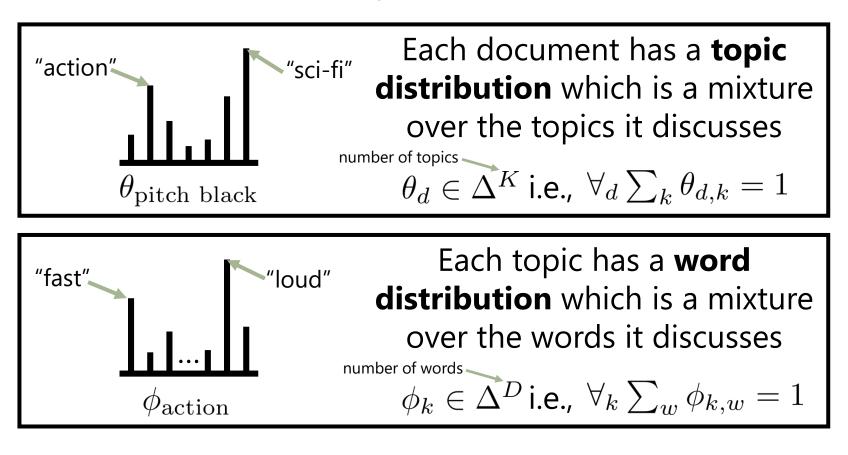


We saw how **LDA** can be used to describe documents in terms of **topics** β α θ_d $(z_{d,j})$ (ϕ_k)

• Each document has a **topic vector** (a stochastic vector describing the fraction of words that discuss each topic)

• Each topic has a **word vector** (a stochastic vector describing how often a particular word is used in that topic)

Topics and documents are **both** described using stochastic vectors:



Topics over Time (Wang & McCallum, 2006) is an approach to incorporate temporal information into topic models

e.g.

- The topics discussed in conference proceedings progressed from neural networks, towards SVMs and structured prediction (and back to neural networks)
- The topics used in political discourse now cover science and technology more than they did in the 1700s
- With in an institution, e-mails will discuss different topics (e.g. recruiting, conference deadlines) at different times of the year

Topics over Time (Wang & McCallum, 2006) is an approach to incorporate temporal information into topic models

The ToT model is similar to LDA with one addition:

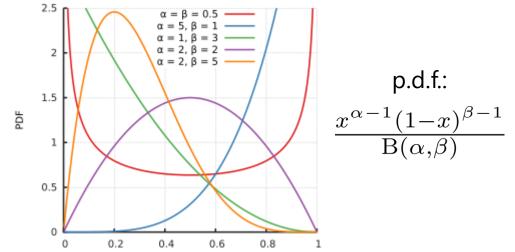
- 1. For each topic K, draw a word vector \phi_k from Dir.(\beta)
- 2. For each document d, draw a topic vector \theta_d from Dir.(\alpha)
- 3. For each word position i:
 - 1. draw a topic z_{di} from multinomial \theta_d
 - 2. draw a word w_{di} from multinomial \phi_{z_{di}}
 - 3. draw a timestamp t_{di} from Beta(\psi_{z_{di}})

Topics over Time (Wang & McCallum, 2006) is an approach to incorporate temporal information into topic models

3.3. draw a timestamp t_{di} from Beta(\psi_{z_{di}})

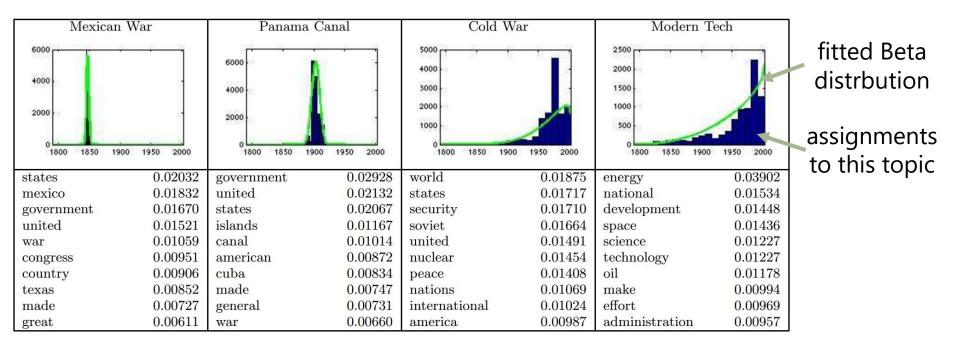
- There is now one Beta distribution per topic
- Inference is still done by Gibbs sampling, with an outer loop to update the Beta distribution parameters

Beta distributions are a flexible family of distributions that can capture several types of behavior – e.g. gradual increase, gradual decline, or temporary "bursts"

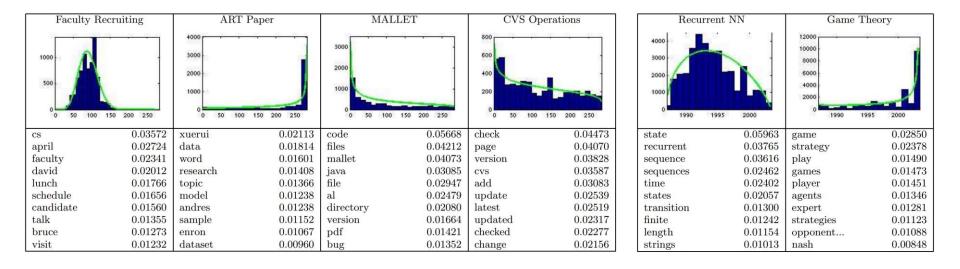


Results:

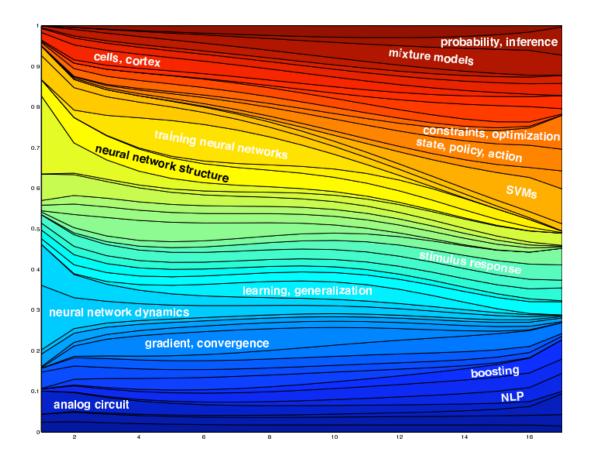
Political addresses – the model seems to capture realistic "bursty" and gradually emerging topics



Results: e-mails & conference proceedings



Results: conference proceedings (NIPS)



Relative weights of various topics in 17 years of NIPS proceedings

Questions?

Further reading: "Topics over Time: A Non-Markov Continuous-Time Model of Topical Trends" (Wang & McCallum, 2006) http://people.cs.umass.edu/~mccallum/papers/tot-kdd06.pdf

CSE 158 — Lecture 17 Web Mining and Recommender Systems

Temporal dynamics of social networks

How can we **characterize**, **model**, and **reason about** the structure of social networks?

1. Models of network structure

- 2. Power-laws and scale-free networks, "rich-get¹richer" phenomena
 - 3. Triadic closure and "the strength of weak ties"
 - 4. Small-world phenomena
 - 5. Hubs & Authorities; PageRank

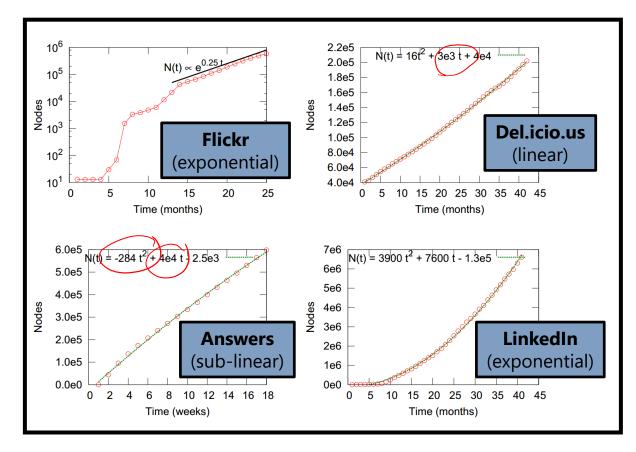
Two weeks ago we saw some processes that model the generation of social and information networks

- Power-laws & small worlds
 - Random graph models

These were all defined with a "static" network in mind. But if we observe the **order** in which edges were created, we can study how these phenomena change as a function of time

First, let's look at "microscopic" evolution, i.e., evolution in terms of individual nodes in the network

Q1: How do networks grow in terms of the number of nodes over time?

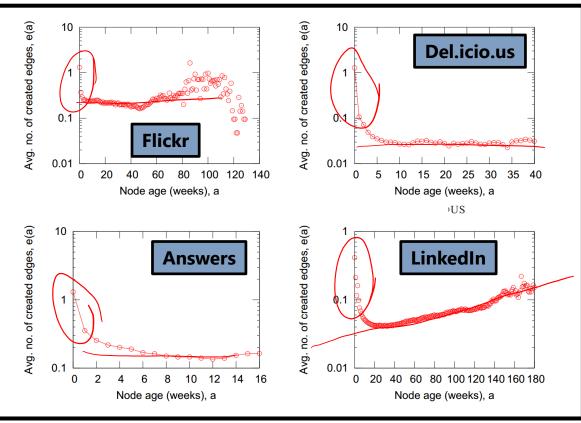


(from Leskovec, 2008 (CMU Thesis))

A: Doesn't seem to be an obvious trend, so what **do** networks have in common as they evolve?

Q2: When do nodes create links?

- x-axis is the age of the nodes
- y-axis is the number of edges created at that age

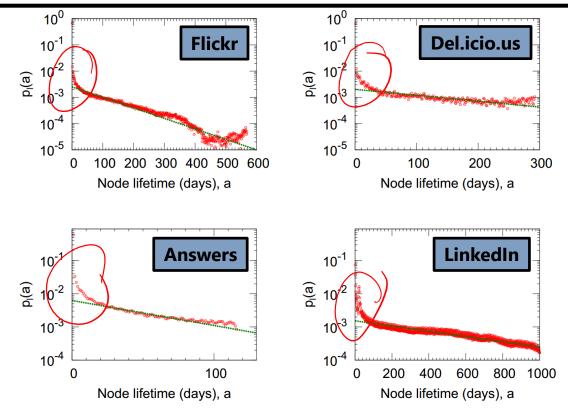


A: In most networks there's a "burst" of initial edge creation which gradually flattens out. Very different behavior on LinkedIn (guesses as to why?)

Q3: How long do nodes "live"?

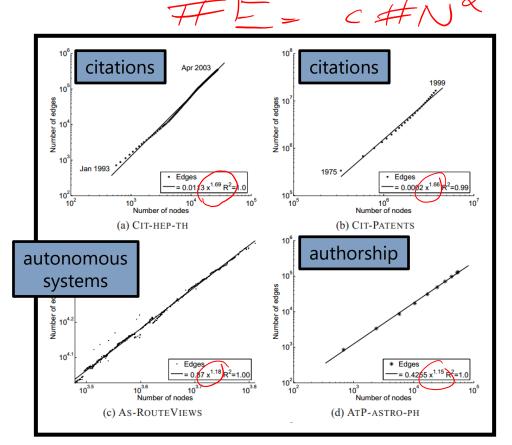
• x-axis is the diff. between date of last and first edge creation

• y-axis is the frequency



A: Node lifetimes follow a power-law: many many nodes are shortlived, with a long-tail of older nodes

What about "macroscopic" evolution, i.e., how do global properties of networks change over time? Q1: How does the # of nodes relate to the # of edges?



- A few more networks: citations, authorship, and autonomous systems (and some others, not shown)
- A: Seems to be linear (on a log-log plot) but the number of edges grows faster than the number of nodes as a function of time

Q1: How does the # of nodes relate to the # of edges? **A:** seems to behave like

 $E(t) \propto N(t)^a$

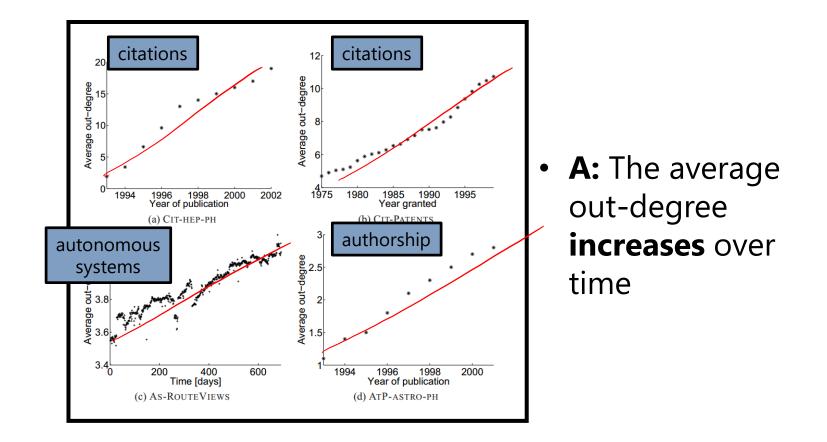
E= 300 × N'

where
$$1 \le a \le 2$$

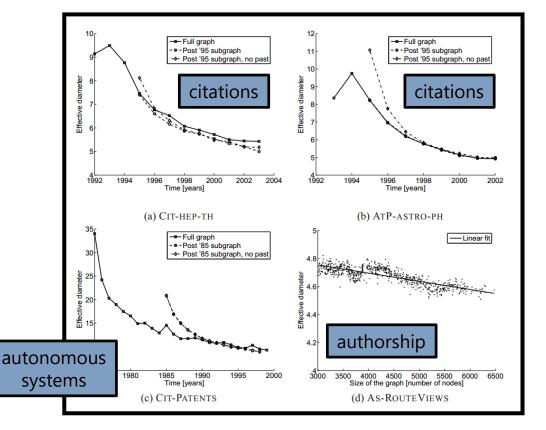
- a = 1 would correspond to constant out-degree which is what we might traditionally assume
 - a = 2 would correspond to the graph being fully connected

 What seems to be the case from the previous examples is that a > 1 – the number of edges grows faster than the number of nodes

Q2: How does the degree change over time?

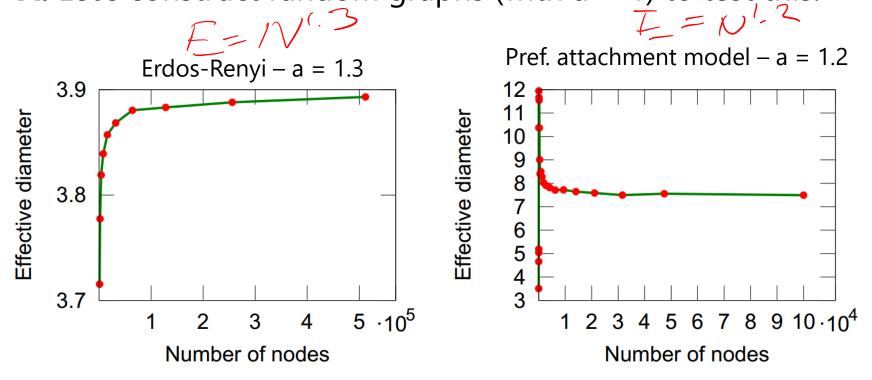


Q3: If the network becomes **denser**, what happens to the (effective) diameter?



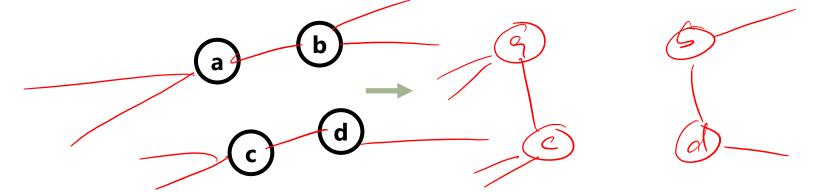
- A: The diameter seems to decrease
- In other words, the network becomes more of a small world as the number of nodes increases

Q4: Is this something that must happen – i.e., if the number of edges increases faster than the number of nodes, does that mean that the diameter must decrease?
A: Let's construct random graphs (with a > 1) to test this:



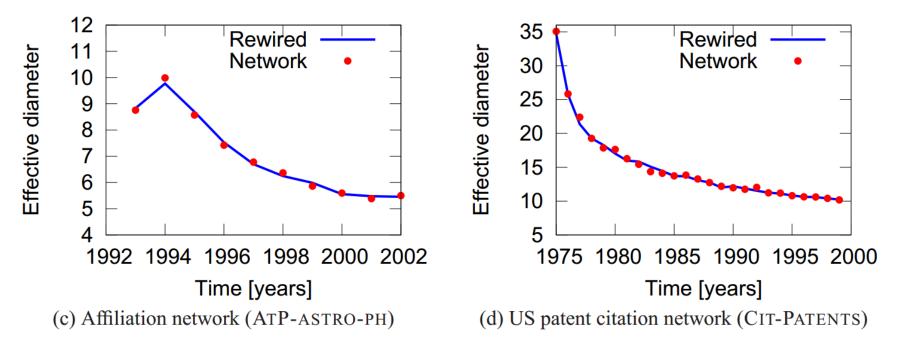
So, a decreasing diameter is **not** a "rule" of a network whose number of edges grows faster than its number of nodes, though it is consistent with a preferential attachment model **Q5:** is the degree distribution of the nodes sufficient to explain the observed phenomenon?

A: Let's perform random rewiring to test this



random rewiring preserves the degree distribution, and randomly samples amongst networks with observed degree distribution

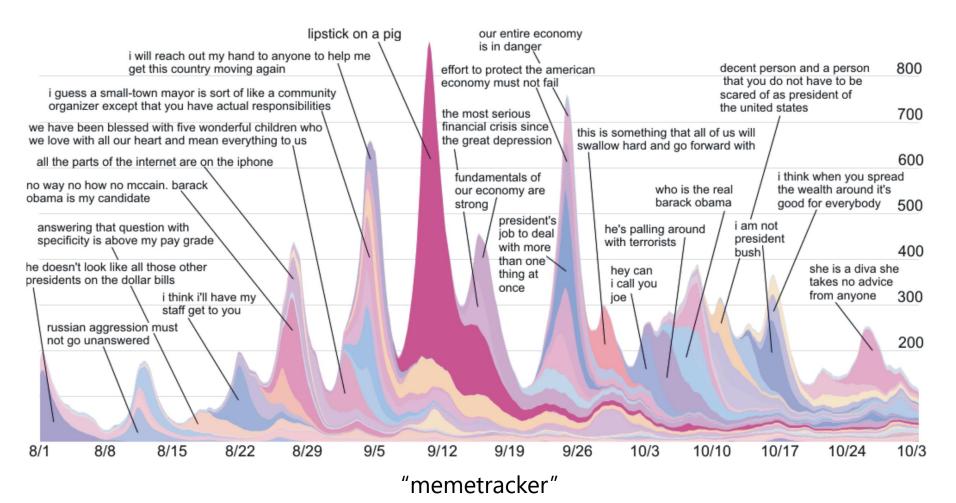
So, a decreasing diameter is **not** a "rule" of a network whose number of edges grows faster than its number of nodes, though it is consistent with a preferential attachment model **Q5:** is the degree distribution of the nodes sufficient to explain the observed phenomenon?



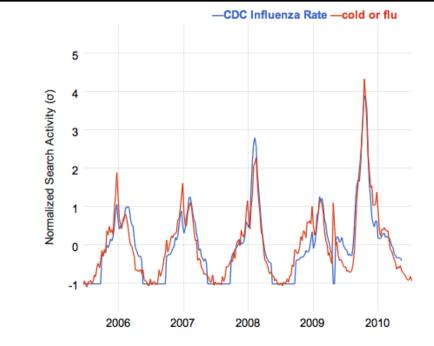
So, a decreasing diameter is **not** a "rule" of a network whose number of edges grows faster than its number of nodes, though it is consistent with a preferential attachment model **Q5:** is the degree distribution of the nodes sufficient to explain the observed phenomenon?

A: Yes! The fact that real-world networks seem to have decreasing diameter over time can be explained as a result of their degree distribution **and** the fact that the number of edges grows faster than the number of nodes

Other interesting topics...

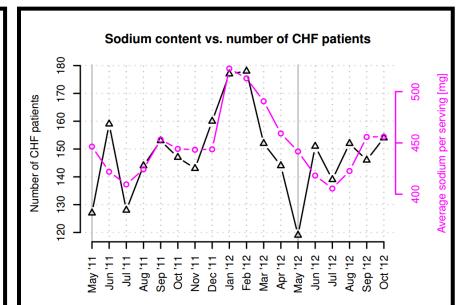


Other interesting topics...



Aligning query data with disease data – Google flu trends:

https://www.google.org/flutrends/us/#US



Sodium content in recipe searches vs. # of heart failure patients – "From Cookies to Cooks" (West et al. 2013): <u>http://infolab.stanford.edu/~west1/pu</u> <u>bs/West-White-Horvitz_WWW-13.pdf</u>

Questions?

Further reading: "Dynamics of Large Networks" (most plots from here) Jure Leskovec, 2008 http://cs.stanford.edu/people/jure/pubs/thesis/jure-thesis.pdf "Microscopic Evolution of Social Networks" Leskovec et al. 2008 http://cs.stanford.edu/people/jure/pubs/microEvol-kdd08.pdf "Graph Evolution: Densification and Shrinking Diameters" Leskovec et al. 2007 http://cs.stanford.edu/people/jure/pubs/powergrowth-tkdd.pdf

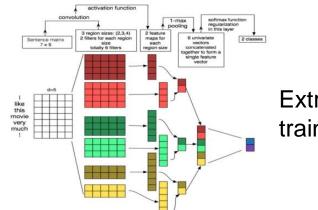
CSE 158 — Lecture 17 Web Mining and Recommender Systems

Some incredible assignments

Fake news detection

Grab real and fake news from Kaggle (fake news detection dataset) and *Freedom to Tinker* (real headlines):

abcnews.go.com bbc.co.uk breitbart.com cbsnews.com chicagotribune.com chron.com cnbc.com cnbc.com forbes.com forbes.com hollywoodreporter.com huffingtonpost.com	55400 37250 148836 110848 87849 33304 142965 30995 74237 20077 104173 36217 72268	<pre>bignuggetnews.com bipartisanreport.com blacklisanreport.com blacklistednews.com breitbart.com christiantimesnewspaper.com chronicle.su unz.com usanewsflash.com usanewsflash.com usanewsflash.com usanewsflash.com usanewsflash.com usanewsflash.com usanewsflash.com usanewsflash.com usanewsflash.com vsare.com vdare.com veteransnewsnow.com veteranstoday.com veteranstoday.com</pre>	9 10 10 10 2 10 10 10
nbcnews.com nypost.com	57621 171295	washingtonsblog.com waterfordwhispersnews.com wearechange.org	10 10 10
politico.com reuters.com	18462 64474	westernjournalism.com whatreallyhappened.com whydontyoutrythis.com	10
theguardian.com	68642	wikileaks.org winningdemocrats.com	
time.com usatoday.com	199723 22632	wnd.com worldnewspolitics.com worldtruth.tv	10 10
usnews.com	118309	wundergroundmusic.com	10
wsj.com	63191	yournewswire.com zerohedge.com	10



Words from real vs. fake headlines

Extract words and train using a CNN

Jimmy Gia Quach, Shih-Cheng Huang

Anime Recommendation

<i>m</i> —	$\sum_{v \in V} similarity(u, v) * rating(v, a)$	
/ _	count(a)	

Features	MSE
Always predict average	1.03293792426
Synopsis bag-of-words	0.806018062926
Genre, members, title	0.681102399363
All of the above	0.62533064608

MyAnimeList dataset from Kaggle

Richard Lin, Daniel Lee

Fine Foods reviews

Zhongjian Zhu, Jinhan Zhang, Siqi Qin

Beer reviews

Yunsheng Li, Mengzhi Li, Chenxi Cao

Used car price prediction

Kaggle used cars dataset (370,000 instances)

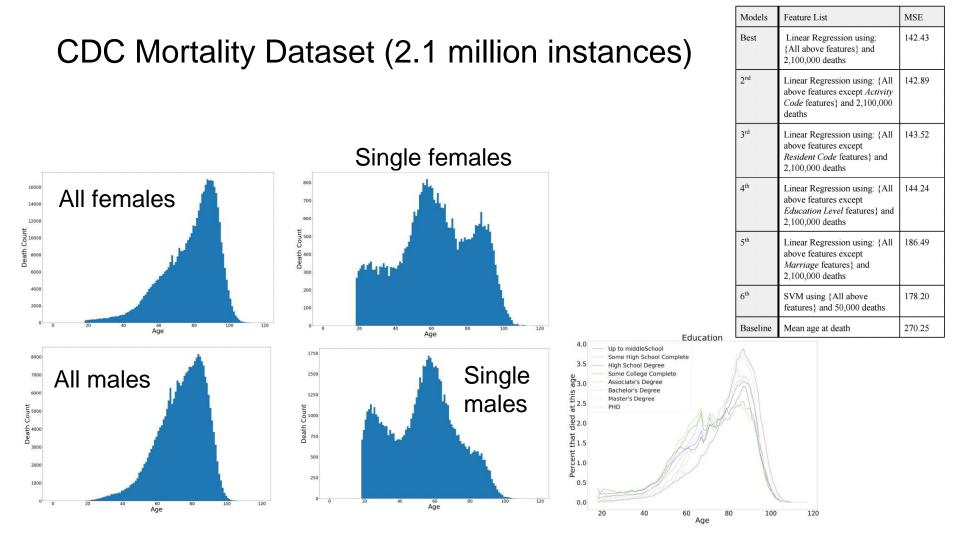
Price vs. fuel type

- Type (sedan, van, etc.)
- Mileage
- Age
- PowerPS
- Damage
- Gearbox
- Fuel type

Features	Train Set Accuracy	Test Set Accuracy
E	0.62770924	0.628140622
D	0.660893404	0.661312692
В	0.685244315	0.686518303
B+E	0.689159007	0.690291888
B+E+D	0.836074827	0.802370585
B+E+D+A	0.88159571	0.830882116
B+E+D+F	0.978870343	0.775907112
B+E+D+C	0.846331237	0.803096275

Xinyuan Zhang, Changtong Qiu, Zhiye Zhang

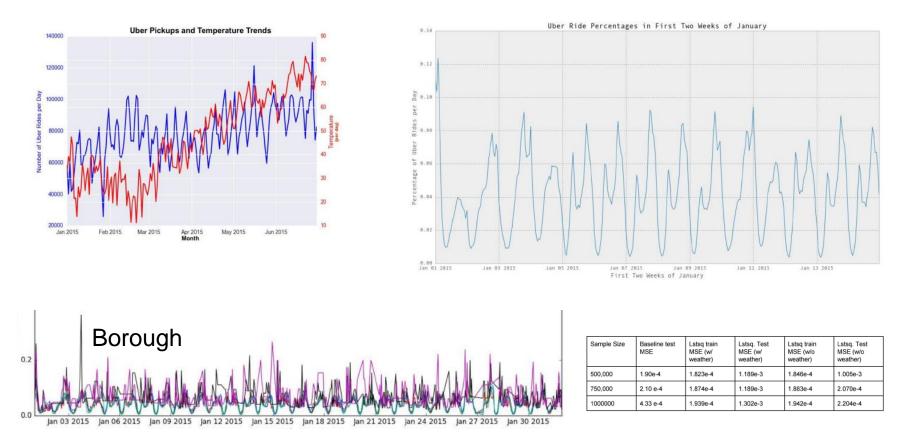
Death clock



Daphne Angeline Gunawan, Brandon Jihwan Hwang, Alan Yian Xu, Franklin Alexander Velasquez

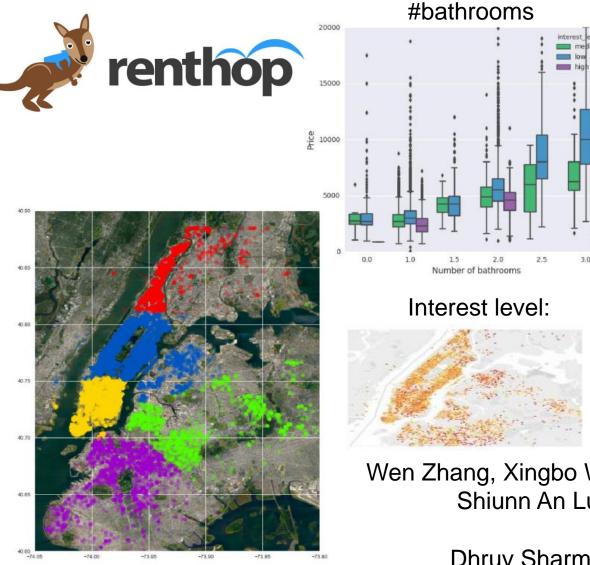
Uber pickups

NYC Uber Dataset (14.2 million samples)

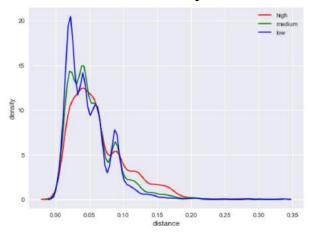


Lilith Huang, Aamir Abdur Rasheed

Rental recommendations



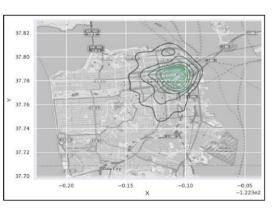
distance to city center



Wen Zhang, Xingbo Wang, Kaixiang Zhao, Lifan Chen Shiunn An Lu, Shanyu Chuang, Hao-En Sung Side Li, Yifan Xu Dhruv Sharma, Keshav Sharma, Saransh Jain

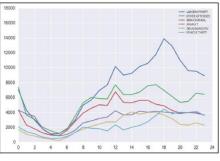
Crime prediction

Field	Description	
ID	Unique identifier for the record	
Case Number	The Chicago Police Department RD Num-	
	ber	
Date	Date when the incident occurred in	
	mm/dd/yyyy.	
Block	The partially redacted address where the	
	incident occurred.	
IUCR	The Illinois Uniform Crime Reporting	
	code	
Primary Type	The primary description of the IUCR	
5 51	code.	
Description	The secondary description of the IUCR	
	code	
Location	Description of the location where the in-	
Description	cident occurred.	
Arrest	Indicates whether an arrest was made.	
Domestic	Indicates whether the incident was	
Donneour	domestic-related	
Beat	Indicates the beat (the smallest police geo-	
Dem	graphic area) where the incident occurred.	
District	Indicates the police district where the in-	
DISTINC	cident occurred.	
Ward	The ward (City Council district) where the	
	incident occurred.	
Community Area	Indicates the community area where the	
, , , , , , , , , , , , , , , , , , , ,	incident occurred. Chicago has 77 com-	
	munity areas.	
FBI Code	Indicates the crime classification as out-	
	lined in the FBI's National Incident-Based	
	Reporting System (NIBRS).	
X Coordinate	The x coordinate of the location where the	
	incident occurred in State Plane Illinois	
	East NAD 1983 projection.	
Y Coordinate	The y coordinate of the location where the	
	incident occurred in State Plane Illinois	
	East NAD 1983 projection.	
Year	Year the incident occurred.	
Updated On	Date and time the record was last updated.	
Latitude	The latitude of the location where the	
	incident occurred.	
Longitude	The longitude of the location where the	
0	incident occurred.	



Theft by location

(a) Thefts



Crime types by hour

<figure>

Wenbin Zhu, Yuchen Wang, Wenjie Tao Sahil Agarwal, Ujjwal Gulecha, Shalini Kedlaya Junyang Li, Shenghong Wang

H1B petitions

Kaggle dataset (~1 million samples)

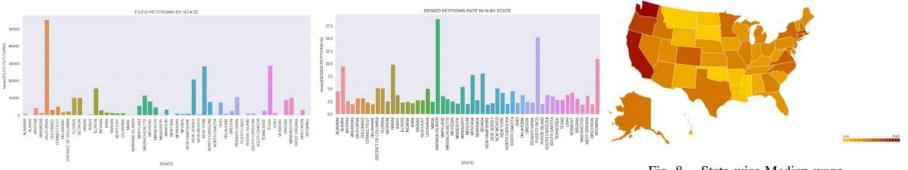
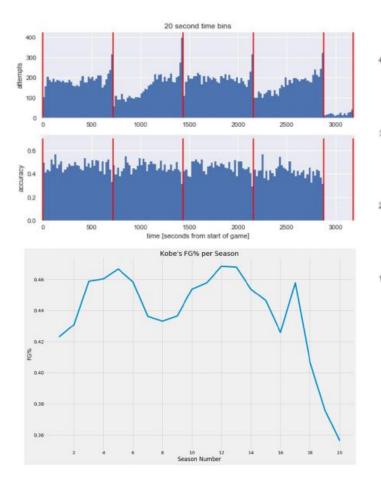


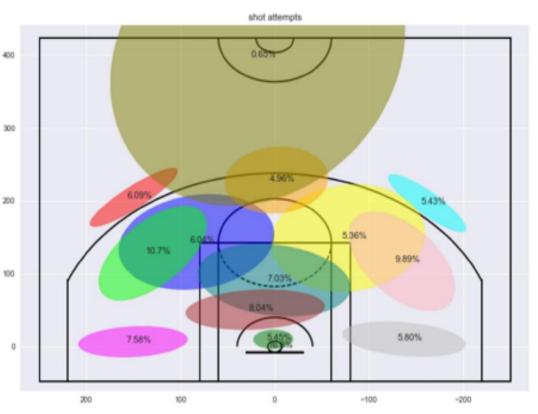
Fig. 8. State-wise Median wage

Yuchen Feng, Xuanzhen Xu, Jianxiong Lin Prahal Arora, Rahul Vijay Dubey, Induja Sreekanthan, Jahnavi Singhal Jialin Wang, Yishu Ma, Han Li

Kobe field goals

Kaggle competition of 30,000 field-goal attempts





Vishaal Prasad

Taxi tips

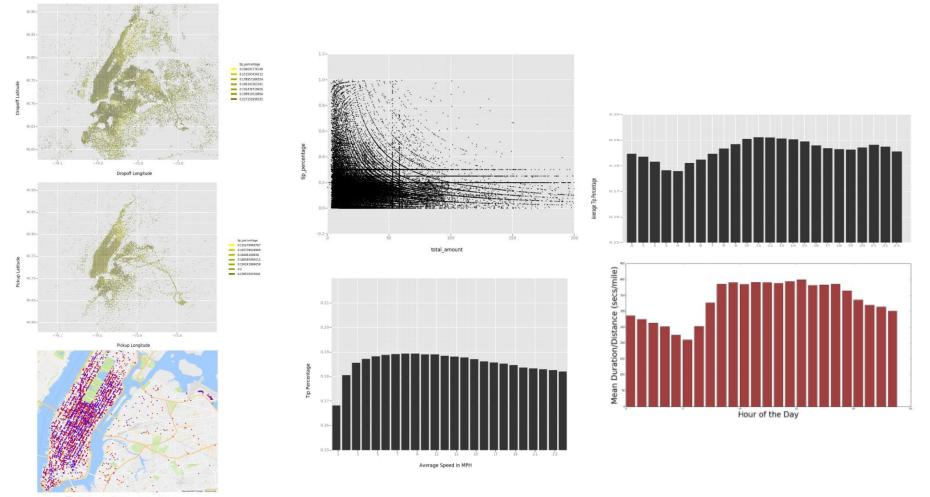


Fig. 1: Mapping of pick-up and drop-off locations

Rushil Nagda, Sudhanshu Bahety, Shubham Gupta Tejas Saxena, Himanshu Jaiswal, Tushar Bansal, Prateek Ravindra Jakate

Fill out those evaluations!

• Please evaluate the course on <u>http://cape.ucsd.edu/students</u> !

Thanks!