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Ten minutes of tensorflow



Tensorflow

Tensorflow (other than doing deep 

learning and all that stuff) is a library to 

specify learning algorithms at a high-

level

This allows you to specify the objective

(e.g. regularized mean squared error), 

without having to worry about the 

details of the solution (e.g. computing 

derivatives and gradient descent)



Tensorflow

e.g. minimize the MSE:

(http://jmcauley.ucsd.edu/code/tensorflow.py)

http://jmcauley.ucsd.edu/code/tensorflow.py


Tensorflow

regularized MSE

(http://jmcauley.ucsd.edu/code/tensorflow.py)

http://jmcauley.ucsd.edu/code/tensorflow.py


Tensorflow

l1 – regularized MSE

(http://jmcauley.ucsd.edu/code/tensorflow.py)

http://jmcauley.ucsd.edu/code/tensorflow.py


Tensorflow

logistic regression with only positive 

parameters

(http://jmcauley.ucsd.edu/code/tensorflow.py)

http://jmcauley.ucsd.edu/code/tensorflow.py
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Algorithms for advertising



Classification

Will I click on

this ad?

Predicting which ads people click on might be a classification 

problem



Recommendation

my (user’s)

“preferences”
HP’s (item) 

“properties”
preference

Toward

“action”

preference toward

“special effects”

is the movie 

action-

heavy?

are the special effects good?

Compatibility

Or… predicting which ads people click on might be a 

recommendation problem



Advertising

So, we already have good algorithms for 

predicting whether a person would click 

on an ad, and generally for 

recommending items that people will 

enjoy.

So what’s different about ad 

recommendation?



Advertising

1. We can’t recommend everybody the 

same thing (even if they all want it!)

• Advertisers have a limited budget – they wouldn’t be able to 

afford having their content recommended to everyone

• Advertisers place bids – we must take their bid into account 

(as well as the user’s preferences – or not)

• In other words, we need to consider both what the user and 

the advertiser want (this is in contrast to recommender 

systems, where the content didn’t get a say about whether it 

was recommended!)



Advertising

2.  We need to be timely

• We want to make a personalized recommendations 

immediately (e.g. the moment a user clicks on an ad) – this 

means that we can’t train complicated algorithms (like what 

we saw with recommender systems) in order to make 

recommendations later

• We also want to update users’ models immediately in 

response to their actions

• (Also true for some recommender systems)



Advertising

3.  We need to take context into account

• Is the page a user is currently visiting particularly relevant to 

a particular type of content?

• Even if we have a good model of the user, recommending 

them the same type of thing over and over again is unlikely 

to succeed – nor does it teach us anything new about the 

user

• In other words, there’s an explore-exploit tradeoff – we want 

to recommend things a user will enjoy (exploit), but also to 

discover new interests that the user may have (explore)



Advertising

So, ultimately we need
1) Algorithms to match users and ads, given budget 

constraints

users advertisers

(each advertiser 

gets one user)
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bid / quality of the 

recommendation



Advertising

So, ultimately we need
2) Algorithms that work in real-time and don’t depend on 

monolithic optimization problems

users advertisers

(each advertiser 

gets one user)

.92

users arrive one at 

a time (but we still 

only get one ad 

per advertiser) –

how to generate a 

good solution?



Advertising

So, ultimately we need
3) Algorithms that adapt to users and capture the notion of an 

exploit/explore tradeoff
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Matching problems



Let’s start with…

1. We can’t recommend everybody the 

same thing (even if they all want it!)

• Advertisers have a limited budget – they wouldn’t be able to 

afford having their content recommended to everyone

• Advertisers place bids – we must take their bid into account 

(as well as the user’s preferences – or not)

• In other words, we need to consider both what the user and 

the advertiser want (this is in contrast to recommender 

systems, where the content didn’t get a say about whether it 

was recommended!)



Bipartite matching

Let’s start with a simple version of the 

problem we ultimately want to solve:

1) Every advertiser wants to show one ad

2) Every user gets to see one ad

3) We have some pre-existing model that 

assigns a score to user-item pairs



Bipartite matching

Suppose we’re given some scoring function:

Could be:

• How much the owner of a is willing to pay to show their ad to u

• How much we expect the user u to spend if they click the ad a

• Probability that user u will click the ad a

Output of a regressor / logistic regressor!



Bipartite matching

Then, we’d like to show each user one ad, and we’d like each 

add to be shown exactly once so as to maximize this score 

(bids, expected profit, probability of clicking etc.)

s.t.

each advertiser gets to show one ad



Bipartite matching

Then, we’d like to show each user one ad, and we’d like each 

add to be shown exactly once so as to maximize this score 

(bids, expected profit, probability of clicking etc.)

s.t.

each advertiser gets to show one ad



Bipartite matching

users ads

(each advertiser 

gets one user)

We can set this up as a bipartite matching problem

• Construct a complete bipartite graph between users and ads, 

where each edge is weighted according to f(u,a)

• Choose edges such that each node is connected to exactly 

one edge

.75

.24

.67

.97

.59

.92

.58



Bipartite matching

men women

(each user of an 

online dating 

platform gets 

shown exactly one 

result)

This is similar to the problem solved by (e.g.) online dating sites 

to match men to women

For this reason it is called a marriage problem

.75

.24

.67

.97

.59

.92

.58



Bipartite matching

This is similar to the problem solved by (e.g.) online dating sites 

to match men to women

For this reason it is called a marriage problem

• A group of men should marry an (equally sized) group of 

women such that happiness is maximized, where “happiness” 

is measured by f(m,w)

• Marriages are monogamous, heterosexual, and everyone gets 

married

(see also the original formulation, in which men have a preference function over 

women, and women have a different preference function over men)

compatibility between male m and female w



Bipartite matching

We’ll see one solution to this problem, 

known as stable marriage

• Maximizing happiness turns out to be quite hard

• But, a solution is “unstable” if:

m w’

w

m’
• A man m is matched to a woman w’ but 

would prefer w (i.e., f(m,w’) < f(m,w))

and

• The feeling is mutual – w prefers m to 

her partner (i.e., f(w,m’) < f(m,w))

• In other words, m and w would both 

want to “cheat” with each other



Bipartite matching

We’ll see one solution to this problem, 

known as stable marriage

• A solution is said to be stable if this is never satisfied for any 

pair (m,w)

m w’

w

m’
• Some people may covet another 

partner,

but

• The feeling is never reciprocated by the 

other person

• So no pair of people would mutually

want to cheat



Bipartite matching

The algorithm works as follows:
(due to Lloyd Shapley & Alvin Roth)

• Men propose to women (this algorithm is from 1962!)

• While there is a man m who is not engaged

• He selects his most compatible partner,                              

(to whom he has not already proposed)

• If she is not engaged, they become engaged

• If she is engaged (to m’), but prefers m, she breaks things 

off with m’ and becomes engaged to m instead



Bipartite matching

The algorithm works as follows:
(due to Lloyd Shapley & Alvin Roth)

All men and all women are initially ‘free’ (i.e., not engaged)

while there is a free man m, and a woman he has not proposed to

w = max_w f(m,w)

if (w is free):

(m,w) become engaged (and are no longer free)

else (w is engaged to m’):

if w prefers m to m’ (i.e., f(m,w) > f(m’,w)):

(m,w) become engaged

m’ becomes free



Bipartite matching

The algorithm works as follows:
(due to Lloyd Shapley & Alvin Roth)

• The algorithm terminates



Bipartite matching

The algorithm works as follows:
(due to Lloyd Shapley & Alvin Roth)

• The solution is stable



Bipartite matching

The algorithm works as follows:
(due to Lloyd Shapley & Alvin Roth)

• The solution is O(n^2)



Bipartite matching –

extensions/improvements

Can all of this be improved upon?

1) It’s not optimal

• Although there’s no pair of individuals who would be happier 

by cheating, there could be groups of men and women who 

would be ultimately happier if the graph were rewired



Bipartite matching –

extensions/improvements

Can all of this be improved upon?

1) It’s not optimal



Bipartite matching –

extensions/improvements

Can all of this be improved upon?

1) It’s not optimal

• Although there’s no pair of individuals who would be happier 

by cheating, there could be groups of men and women who 

would be ultimately happier if the graph were rewired

• To get a truly optimal solution, there’s a more complicated 

algorithm, known as the “Hungarian Algorithm”

• But it’s O(n^3)

• And really complicated and unintuitive (but there’s a ref later)



Bipartite matching –

extensions/improvements

Can all of this be improved upon?

2) Marriages are monogamous, 

heterosexual, and everyone gets married

• Each advertiser may have a fixed 

budget of (1 or more) ads

• We may have room to show more than 

one ad to each customer

• See “Stable marriage with multiple 

partners: efficient search for an optimal 

solution” (refs)

(each user 

gets shown 

two ads, each 

ad gets 

shown to two 

users)



Bipartite matching –

extensions/improvements

Can all of this be improved upon?

2) Marriages are monogamous, 

heterosexual, and everyone gets married

• This version of the problem is 

know as graph cover (select 

edges such that each node is 

connected to exactly one edge)

• The algorithm we saw is really just 

graph cover for a bipartite graph

• Can be solved via the “stable 

roommates” algorithm (see refs) 

and extended in the same ways



Bipartite matching –

extensions/improvements

Can all of this be improved upon?

2) Marriages are monogamous, 

heterosexual, and everyone gets married

• This version of the problem can 

address a very different variety of 

applications compared to the 

bipartite version

• Roommate matching

• Finding chat partners

• (or any sort of person-to-person 

matching)



Bipartite matching –

extensions/improvements

Can all of this be improved upon?

2) Marriages are monogamous, 

heterosexual, and everyone gets married

• Easy enough just to create “dummy 

nodes” that represent no matchusers ads

no ad is shown to the corresponding user



Bipartite matching – applications

Why are matching problems so important?

• Advertising

• Recommendation

• Roommate assignments

• Assigning students to classes

• General resource allocation problems

• Transportation problems (see “Methods of Finding the 

Minimal Kilometrage in Cargo-transportation in space”)

• Hospitals/residents



Bipartite matching – applications

Why are matching problems so important?

• Point pattern matching

see e.g. my thesis



Bipartite matching –

extensions/improvements

What about more complicated rules?

• (e.g. for hospital residencies) Suppose we want to keep 

couples together

• Then we would need a more complicated function that 

encodes these pairwise relationships:

pair of residents hospitals to which they’re assigned



So far…

Surfacing ads to users is a like a little like 

building a recommender system for ads

• We need to model the compatibility between each user 

and each ad (probability of clicking, expected return, etc.)

• But, we can’t recommend the same ad to every user, so we 

have to handle “budgets” (both how many ads can be 

shown to each user and how many impressions the 

advertiser can afford)

• So, we can cast the problem as one of “covering” a 

bipartite graph

• Such bipartite matching formulations can be adapted to 

a wide variety of tasks



Questions?

Further reading:

• The original stable marriage paper
“College Admissions and the Stability of Marriage” (Gale, D.; Shapley, L. S., 1962):

https://www.jstor.org/stable/2312726

• The Hungarian algorithm
“The Hungarian Method for the assignment problem” (Kuhn, 1955):

https://tom.host.cs.st-andrews.ac.uk/CS3052-CC/Practicals/Kuhn.pdf

• Multiple partners
“Stable marriage with multiple partners: efficient search for an optimal solution” (Bansal et 

al., 2003)

• Graph cover & stable roommates
“An efficient algorithm for the ‘stable roommates’ problem” (Irving, 1985)

https://dx.doi.org/10.1016%2F0196-6774%2885%2990033-1

https://www.jstor.org/stable/2312726
https://tom.host.cs.st-andrews.ac.uk/CS3052-CC/Practicals/Kuhn.pdf
https://dx.doi.org/10.1016/0196-6774(85)90033-1


Assignment 1: What worked and what 

didn’t?
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Assignment 1: What worked and what 

didn’t?


