
CSE 158 – Lecture 14
Web Mining and Recommender Systems

Ten minutes of tensorflow

Tensorflow

Tensorflow (other than doing deep

learning and all that stuff) is a library to

specify learning algorithms at a high-

level

This allows you to specify the objective

(e.g. regularized mean squared error),

without having to worry about the

details of the solution (e.g. computing

derivatives and gradient descent)

Tensorflow

e.g. minimize the MSE:

(http://jmcauley.ucsd.edu/code/tensorflow.py)

http://jmcauley.ucsd.edu/code/tensorflow.py

Tensorflow

regularized MSE

(http://jmcauley.ucsd.edu/code/tensorflow.py)

http://jmcauley.ucsd.edu/code/tensorflow.py

Tensorflow

l1 – regularized MSE

(http://jmcauley.ucsd.edu/code/tensorflow.py)

http://jmcauley.ucsd.edu/code/tensorflow.py

Tensorflow

logistic regression with only positive

parameters

(http://jmcauley.ucsd.edu/code/tensorflow.py)

http://jmcauley.ucsd.edu/code/tensorflow.py

CSE 158 – Lecture 14
Web Mining and Recommender Systems

Algorithms for advertising

Classification

Will I click on

this ad?

Predicting which ads people click on might be a classification

problem

Recommendation

my (user’s)

“preferences”
HP’s (item)

“properties”
preference

Toward

“action”

preference toward

“special effects”

is the movie

action-

heavy?

are the special effects good?

Compatibility

Or… predicting which ads people click on might be a

recommendation problem

Advertising

So, we already have good algorithms for

predicting whether a person would click

on an ad, and generally for

recommending items that people will

enjoy.

So what’s different about ad

recommendation?

Advertising

1. We can’t recommend everybody the

same thing (even if they all want it!)

• Advertisers have a limited budget – they wouldn’t be able to

afford having their content recommended to everyone

• Advertisers place bids – we must take their bid into account

(as well as the user’s preferences – or not)

• In other words, we need to consider both what the user and

the advertiser want (this is in contrast to recommender

systems, where the content didn’t get a say about whether it

was recommended!)

Advertising

2. We need to be timely

• We want to make a personalized recommendations

immediately (e.g. the moment a user clicks on an ad) – this

means that we can’t train complicated algorithms (like what

we saw with recommender systems) in order to make

recommendations later

• We also want to update users’ models immediately in

response to their actions

• (Also true for some recommender systems)

Advertising

3. We need to take context into account

• Is the page a user is currently visiting particularly relevant to

a particular type of content?

• Even if we have a good model of the user, recommending

them the same type of thing over and over again is unlikely

to succeed – nor does it teach us anything new about the

user

• In other words, there’s an explore-exploit tradeoff – we want

to recommend things a user will enjoy (exploit), but also to

discover new interests that the user may have (explore)

Advertising

So, ultimately we need
1) Algorithms to match users and ads, given budget

constraints

users advertisers

(each advertiser

gets one user)

.92

.75

.24

.67

.97

.59

.58

bid / quality of the

recommendation

Advertising

So, ultimately we need
2) Algorithms that work in real-time and don’t depend on

monolithic optimization problems

users advertisers

(each advertiser

gets one user)

.92

users arrive one at

a time (but we still

only get one ad

per advertiser) –

how to generate a

good solution?

Advertising

So, ultimately we need
3) Algorithms that adapt to users and capture the notion of an

exploit/explore tradeoff

CSE 158 – Lecture 14
Web Mining and Recommender Systems

Matching problems

Let’s start with…

1. We can’t recommend everybody the

same thing (even if they all want it!)

• Advertisers have a limited budget – they wouldn’t be able to

afford having their content recommended to everyone

• Advertisers place bids – we must take their bid into account

(as well as the user’s preferences – or not)

• In other words, we need to consider both what the user and

the advertiser want (this is in contrast to recommender

systems, where the content didn’t get a say about whether it

was recommended!)

Bipartite matching

Let’s start with a simple version of the

problem we ultimately want to solve:

1) Every advertiser wants to show one ad

2) Every user gets to see one ad

3) We have some pre-existing model that

assigns a score to user-item pairs

Bipartite matching

Suppose we’re given some scoring function:

Could be:

• How much the owner of a is willing to pay to show their ad to u

• How much we expect the user u to spend if they click the ad a

• Probability that user u will click the ad a

Output of a regressor / logistic regressor!

Bipartite matching

Then, we’d like to show each user one ad, and we’d like each

add to be shown exactly once so as to maximize this score

(bids, expected profit, probability of clicking etc.)

s.t.

each advertiser gets to show one ad

Bipartite matching

Then, we’d like to show each user one ad, and we’d like each

add to be shown exactly once so as to maximize this score

(bids, expected profit, probability of clicking etc.)

s.t.

each advertiser gets to show one ad

Bipartite matching

users ads

(each advertiser

gets one user)

We can set this up as a bipartite matching problem

• Construct a complete bipartite graph between users and ads,

where each edge is weighted according to f(u,a)

• Choose edges such that each node is connected to exactly

one edge

.75

.24

.67

.97

.59

.92

.58

Bipartite matching

men women

(each user of an

online dating

platform gets

shown exactly one

result)

This is similar to the problem solved by (e.g.) online dating sites

to match men to women

For this reason it is called a marriage problem

.75

.24

.67

.97

.59

.92

.58

Bipartite matching

This is similar to the problem solved by (e.g.) online dating sites

to match men to women

For this reason it is called a marriage problem

• A group of men should marry an (equally sized) group of

women such that happiness is maximized, where “happiness”

is measured by f(m,w)

• Marriages are monogamous, heterosexual, and everyone gets

married

(see also the original formulation, in which men have a preference function over

women, and women have a different preference function over men)

compatibility between male m and female w

Bipartite matching

We’ll see one solution to this problem,

known as stable marriage

• Maximizing happiness turns out to be quite hard

• But, a solution is “unstable” if:

m w’

w

m’
• A man m is matched to a woman w’ but

would prefer w (i.e., f(m,w’) < f(m,w))

and

• The feeling is mutual – w prefers m to

her partner (i.e., f(w,m’) < f(m,w))

• In other words, m and w would both

want to “cheat” with each other

Bipartite matching

We’ll see one solution to this problem,

known as stable marriage

• A solution is said to be stable if this is never satisfied for any

pair (m,w)

m w’

w

m’
• Some people may covet another

partner,

but

• The feeling is never reciprocated by the

other person

• So no pair of people would mutually

want to cheat

Bipartite matching

The algorithm works as follows:
(due to Lloyd Shapley & Alvin Roth)

• Men propose to women (this algorithm is from 1962!)

• While there is a man m who is not engaged

• He selects his most compatible partner,

(to whom he has not already proposed)

• If she is not engaged, they become engaged

• If she is engaged (to m’), but prefers m, she breaks things

off with m’ and becomes engaged to m instead

Bipartite matching

The algorithm works as follows:
(due to Lloyd Shapley & Alvin Roth)

All men and all women are initially ‘free’ (i.e., not engaged)

while there is a free man m, and a woman he has not proposed to

w = max_w f(m,w)

if (w is free):

(m,w) become engaged (and are no longer free)

else (w is engaged to m’):

if w prefers m to m’ (i.e., f(m,w) > f(m’,w)):

(m,w) become engaged

m’ becomes free

Bipartite matching

The algorithm works as follows:
(due to Lloyd Shapley & Alvin Roth)

• The algorithm terminates

Bipartite matching

The algorithm works as follows:
(due to Lloyd Shapley & Alvin Roth)

• The solution is stable

Bipartite matching

The algorithm works as follows:
(due to Lloyd Shapley & Alvin Roth)

• The solution is O(n^2)

Bipartite matching –

extensions/improvements

Can all of this be improved upon?

1) It’s not optimal

• Although there’s no pair of individuals who would be happier

by cheating, there could be groups of men and women who

would be ultimately happier if the graph were rewired

Bipartite matching –

extensions/improvements

Can all of this be improved upon?

1) It’s not optimal

Bipartite matching –

extensions/improvements

Can all of this be improved upon?

1) It’s not optimal

• Although there’s no pair of individuals who would be happier

by cheating, there could be groups of men and women who

would be ultimately happier if the graph were rewired

• To get a truly optimal solution, there’s a more complicated

algorithm, known as the “Hungarian Algorithm”

• But it’s O(n^3)

• And really complicated and unintuitive (but there’s a ref later)

Bipartite matching –

extensions/improvements

Can all of this be improved upon?

2) Marriages are monogamous,

heterosexual, and everyone gets married

• Each advertiser may have a fixed

budget of (1 or more) ads

• We may have room to show more than

one ad to each customer

• See “Stable marriage with multiple

partners: efficient search for an optimal

solution” (refs)

(each user

gets shown

two ads, each

ad gets

shown to two

users)

Bipartite matching –

extensions/improvements

Can all of this be improved upon?

2) Marriages are monogamous,

heterosexual, and everyone gets married

• This version of the problem is

know as graph cover (select

edges such that each node is

connected to exactly one edge)

• The algorithm we saw is really just

graph cover for a bipartite graph

• Can be solved via the “stable

roommates” algorithm (see refs)

and extended in the same ways

Bipartite matching –

extensions/improvements

Can all of this be improved upon?

2) Marriages are monogamous,

heterosexual, and everyone gets married

• This version of the problem can

address a very different variety of

applications compared to the

bipartite version

• Roommate matching

• Finding chat partners

• (or any sort of person-to-person

matching)

Bipartite matching –

extensions/improvements

Can all of this be improved upon?

2) Marriages are monogamous,

heterosexual, and everyone gets married

• Easy enough just to create “dummy

nodes” that represent no matchusers ads

no ad is shown to the corresponding user

Bipartite matching – applications

Why are matching problems so important?

• Advertising

• Recommendation

• Roommate assignments

• Assigning students to classes

• General resource allocation problems

• Transportation problems (see “Methods of Finding the

Minimal Kilometrage in Cargo-transportation in space”)

• Hospitals/residents

Bipartite matching – applications

Why are matching problems so important?

• Point pattern matching

see e.g. my thesis

Bipartite matching –

extensions/improvements

What about more complicated rules?

• (e.g. for hospital residencies) Suppose we want to keep

couples together

• Then we would need a more complicated function that

encodes these pairwise relationships:

pair of residents hospitals to which they’re assigned

So far…

Surfacing ads to users is a like a little like

building a recommender system for ads

• We need to model the compatibility between each user

and each ad (probability of clicking, expected return, etc.)

• But, we can’t recommend the same ad to every user, so we

have to handle “budgets” (both how many ads can be

shown to each user and how many impressions the

advertiser can afford)

• So, we can cast the problem as one of “covering” a

bipartite graph

• Such bipartite matching formulations can be adapted to

a wide variety of tasks

Questions?

Further reading:

• The original stable marriage paper
“College Admissions and the Stability of Marriage” (Gale, D.; Shapley, L. S., 1962):

https://www.jstor.org/stable/2312726

• The Hungarian algorithm
“The Hungarian Method for the assignment problem” (Kuhn, 1955):

https://tom.host.cs.st-andrews.ac.uk/CS3052-CC/Practicals/Kuhn.pdf

• Multiple partners
“Stable marriage with multiple partners: efficient search for an optimal solution” (Bansal et

al., 2003)

• Graph cover & stable roommates
“An efficient algorithm for the ‘stable roommates’ problem” (Irving, 1985)

https://dx.doi.org/10.1016%2F0196-6774%2885%2990033-1

https://www.jstor.org/stable/2312726
https://tom.host.cs.st-andrews.ac.uk/CS3052-CC/Practicals/Kuhn.pdf
https://dx.doi.org/10.1016/0196-6774(85)90033-1

Assignment 1: What worked and what

didn’t?

Assignment 1: What worked and what

didn’t?

Assignment 1: What worked and what

didn’t?

Assignment 1: What worked and what

didn’t?

