CSE 158 – Lecture 14
Web Mining and Recommender Systems

Ten minutes of tensorflow
Tensorflow (other than doing deep learning and all that stuff) is a library to specify learning algorithms at a high-level.

This allows you to specify the objective (e.g. regularized mean squared error), without having to worry about the details of the solution (e.g. computing derivatives and gradient descent).
e.g. minimize the MSE:

$\frac{1}{n} \sum \frac{1}{2} (y_i - x_i \cdot \theta)^2$
Tensorflow

regularized MSE

(\text{http://jmcauley.ucsd.edu/code/tensorflow.py})
I1 – regularized MSE

(http://jmcauley.ucsd.edu/code/tensorflow.py)
logistic regression with only positive parameters

\[
\sum_{y_i=1} \log \sigma (X_i \cdot \theta) + \sum_{y_i=0} \log (1-\sigma (X_i \cdot \theta))
\]
CSE 158 – Lecture 14

Web Mining and Recommender Systems

Algorithms for advertising
Classification

Predicting which ads people click on might be a classification problem.

Will I click on this ad?
Recommendation

Or... predicting which ads people click on might be a recommendation problem.

- Preference toward "action" for my (user's) "preferences".
- Preference toward "special effects".
- HP's (item) "properties": is the movie action-heavy?
- Compatibility: are the special effects good?
Advertising

So, we already have good algorithms for predicting whether a person would click on an ad, and generally for recommending items that people will enjoy.

So what’s different about ad recommendation?
1. We can’t recommend everybody the same thing (even if they all want it!)

- Advertisers have a limited budget – they wouldn’t be able to afford having their content recommended to everyone
- Advertisers **place bids** – we must take their bid into account (as well as the user’s preferences – or not)

- In other words, we need to consider both what the **user and the advertiser** want (this is in contrast to recommender systems, where the content didn’t get a say about whether it was recommended!)
2. We need to be **timely**

- We want to make a personalized recommendations immediately (e.g. the moment a user clicks on an ad) – this means that we can’t train complicated algorithms (like what we saw with recommender systems) in order to make recommendations later
- We also want to update users’ models **immediately** in response to their actions
 - (Also true for some recommender systems)
3. We need to take context into account

- Is the page a user is currently visiting particularly relevant to a particular type of content?
- Even if we have a good model of the user, recommending them the same type of thing over and over again is unlikely to succeed – nor does it teach us anything new about the user.

- In other words, there’s an explore-exploit tradeoff – we want to recommend things a user will enjoy (exploit), but also to discover new interests that the user may have (explore).
So, ultimately we need
1) Algorithms to match users and ads, given budget constraints

![Diagram](image-url)

- Users
- Advertisers
- Bid / quality of the recommendation

(each advertiser gets one user)
So, ultimately we need

2) Algorithms that work in real-time and don’t depend on monolithic optimization problems

users arrive one at a time (but we still only get one ad per advertiser) – how to generate a good solution?
So, ultimately we need

3) Algorithms that adapt to users and capture the notion of an exploit/explore tradeoff
Let’s start with...

1. We can’t recommend everybody the same thing (even if they all want it!)

 • Advertisers have a limited budget – they wouldn’t be able to afford having their content recommended to everyone
 • Advertisers **place bids** – we must take their bid into account (as well as the user’s preferences – or not)

 • In other words, we need to consider both what the user and the advertiser want (this is in contrast to recommender systems, where the content didn’t get a say about whether it was recommended!)
Bipartite matching

Let’s start with a simple version of the problem we ultimately want to solve:
1) Every advertiser wants to show one ad
2) Every user gets to see one ad
3) We have some pre-existing model that assigns a score to user-item pairs
Bipartite matching

Suppose we’re given some scoring function:

\[f(u, a) = \text{score for showing user } u \text{ ad } a \]

Could be:

- How much the owner of \(a \) is willing to pay to show their ad to \(u \)
- How much we expect the user \(u \) to spend if they click the ad \(a \)
- Probability that user \(u \) will click the ad \(a \)

Output of a regressor / logistic regressor!
Then, we’d like to show each user one ad, and we’d like each add to be shown exactly once so as to maximize this score (bids, expected profit, probability of clicking etc.)

$$\sum_u f(u, ad(u))$$

s.t.

$$ad(u) = ad(v) \rightarrow u = v$$

each advertiser gets to show one ad
Bipartite matching

Then, we’d like to show each user one ad, and we’d like each add to be shown exactly once so as to maximize this score (bids, expected profit, probability of clicking etc.)

\[\sum_{u,a} A_{u,a} f(u,a) \]

s.t.

\[\forall a \sum_u A_{u,a} = 1 \]

\[\forall u \exists A_{u,a} = 1 \]

each advertiser gets to show one ad

every user sees one ad
We can set this up as a **bipartite matching** problem

- Construct a complete bipartite graph between users and ads, where each edge is weighted according to $f(u,a)$
- Choose edges such that each node is connected to exactly one edge

We define $f(u,a)$.
Bipartite matching

This is similar to the problem solved by (e.g.) online dating sites to match men to women. For this reason it is called a marriage problem.
Bipartite matching

This is similar to the problem solved by (e.g.) online dating sites to match men to women. For this reason it is called a marriage problem.

• A group of men should marry an (equally sized) group of women such that happiness is maximized, where “happiness” is measured by $f(m,w)$.

 compatibility between male m and female w

• Marriages are monogamous, heterosexual, and everyone gets married.

(see also the original formulation, in which men have a preference function over women, and women have a different preference function over men)
We’ll see one solution to this problem, known as **stable marriage**

- Maximizing happiness turns out to be quite hard
 - **But**, a solution is **“unstable”** if:
 - A man m is matched to a woman w' but would prefer w (i.e., $f(m, w') < f(m, w)$)
 - The feeling is mutual – w prefers m to her partner (i.e., $f(w, m') < f(m, w)$)
 - In other words, m and w would both want to “cheat” with each other
Bipartite matching

We’ll see one solution to this problem, known as **stable marriage**

- A solution is said to be **stable** if this is **never satisfied** for any pair \((m,w)\)

![Diagram](https://via.placeholder.com/150)

- Some people may covet another partner,
 - but
 - The feeling is never reciprocated by the other person

- So no pair of people would **mutually** want to cheat
Bipartite matching

The algorithm works as follows:
(due to Lloyd Shapley & Alvin Roth)

• Men propose to women (this algorithm is from 1962!)
• While there is a man m who is not engaged
 • He selects his most compatible partner, $\max_w f(m, w)$
 (to whom he has not already proposed)
 • If she is not engaged, they become engaged
 • If she is engaged (to m'), but prefers m, she breaks things off with m' and becomes engaged to m instead
Bipartite matching

The algorithm works as follows:
(due to Lloyd Shapley & Alvin Roth)

All men and all women are initially ‘free’ (i.e., not engaged)

while there is a free man m, and a woman he has not proposed to

w = max_w f(m,w)

if (w is free):

 (m,w) become engaged (and are no longer free)

else (w is engaged to m’):

 if w prefers m to m’ (i.e., f(m,w) > f(m’,w)):

 (m,w) become engaged

 m’ becomes free
Bipartite matching

The algorithm works as follows:
(due to Lloyd Shapley & Alvin Roth)

- The algorithm terminates

1) At every step, we perform one new proposal - and there are limited proposals

2) At any step, happiness increases or stays the same
The algorithm works as follows: (due to Lloyd Shapley & Alvin Roth)

- The solution is stable
The algorithm works as follows:
(due to Lloyd Shapley & Alvin Roth)

- The solution is $O(n^2)$
Can all of this be improved upon?

1) It’s not optimal

• Although there’s no pair of individuals who would be happier by cheating, there could be groups of men and women who would be ultimately happier if the graph were rewired
Can all of this be improved upon?

1) It’s not optimal

stable but not optimal

score = 11

optimal but not stable
Can all of this be improved upon?

1) It’s not optimal

- Although there’s no pair of individuals who would be happier by cheating, there could be groups of men and women who would be ultimately happier if the graph were rewired.

- To get a truly optimal solution, there’s a more complicated algorithm, known as the “Hungarian Algorithm”
 - But it’s $O(n^3)$
- And really complicated and unintuitive (but there’s a ref later)
Can all of this be improved upon?

2) Marriages are **monogamous**, heterosexual, and everyone gets married

- Each advertiser may have a fixed budget of (1 or more) ads
- We may have room to show more than one ad to each customer
- See “Stable marriage with multiple partners: efficient search for an optimal solution” (refs)
Can all of this be improved upon?

2) Marriages are monogamous, heterosexual, and everyone gets married

- This version of the problem is known as *graph cover* (select edges such that each node is connected to exactly one edge)
- The algorithm we saw is really just graph cover for a bipartite graph
- Can be solved via the “stable roommates” algorithm (see refs) and extended in the same ways
Can all of this be improved upon?

2) Marriages are monogamous, **heterosexual**, and everyone gets married

- This version of the problem can address a very different variety of applications compared to the bipartite version
 - Roommate matching
 - Finding chat partners
 - (or any sort of person-to-person matching)
Can all of this be improved upon?

2) Marriages are monogamous, heterosexual, and everyone gets married

- Easy enough just to create “dummy nodes” that represent no match

- No ad is shown to the corresponding user
Why are matching problems so important?

- Advertising
- Recommendation
- Roommate assignments
- Assigning students to classes
- General resource allocation problems
- Transportation problems (see “Methods of Finding the Minimal Kilometrage in Cargo-transportation in space”)
- Hospitals/residents
Bipartite matching – applications

Why are matching problems so important?

• Point pattern matching

see e.g. my thesis
What about more complicated rules?

- (e.g. for hospital residencies) Suppose we want to keep couples together
- Then we would need a more complicated function that encodes these pairwise relationships:

\[\sum_{u, v} f(u, v, hospital(u), hospital(v)) \]

pair of residents hospitals to which they’re assigned
Surfacing ads to users is a little like building a **recommender system** for ads

- We need to model the compatibility between each user and each ad (probability of clicking, expected return, etc.)
- **But**, we can’t recommend the same ad to every user, so we have to handle “budgets” (both how many ads can be shown to each user and how many impressions the advertiser can afford)
- **So**, we can cast the problem as one of “covering” a bipartite graph
- Such **bipartite matching** formulations can be adapted to a wide variety of tasks
Further reading:

• The original stable marriage paper
 https://www.jstor.org/stable/2312726

• The Hungarian algorithm
 “The Hungarian Method for the assignment problem” (Kuhn, 1955):
 https://tom.host.cs.st-andrews.ac.uk/CS3052-CC/Practicals/Kuhn.pdf

• Multiple partners
 “Stable marriage with multiple partners: efficient search for an optimal solution” (Bansal et al., 2003)

• Graph cover & stable roommates
 “An efficient algorithm for the ‘stable roommates’ problem” (Irving, 1985)
 https://dx.doi.org/10.1016%2F0196-6774%2885%290033-1
Assignment 1: What worked and what didn’t?

Categorization

- # times user has reviewed some category
- 5000 daysBow features
- $, length
- Multilayer perception
Assignment 1: What worked and what didn’t?

- lowercase, stem, remove punctuation!
- that
- SVM
- if low confidence, rely on category counts
Assignment 1: What worked and what didn’t?

Helpfulness
- Ratings, difference between rating and rating
- # reviews
- Prior helpfulness rank for user
- out of
Assignment 1: What worked and what didn’t?

- length
- av. word length
- # ! ? # capital letters
- Readability index
- age of items
- dropping low rates
- MAE