Problem 1

Recall that the projection of a vector x onto another vector y is defined as the vector \(\frac{\langle x, y \rangle}{\|y\|^2} y \). Suppose $u_1 \neq u_2$ are two vectors such that $\|u_1\| = \|u_2\| = 1$, and u_1 and u_2 are not orthogonal to each other. Let x be a third non-zero vector.

Alice and Bob have been asked to take projections of x onto u_1 and u_2. Alice first projects x onto u_1 and then projects the result onto u_2 to get the vector a. Bob first projects x onto u_2 and then projects the result onto u_1 to get the vector b.

1. Is $\|a\| = \|b\|$ for all x? Justify your answer if this is the case, and provide a counter-example if this is not the case.

2. Now suppose that u_1 and u_2 are orthogonal to each other. Does this change your answer to part (1)? Justify your answer (or provide a counterexample, as the case may be.)