Instructions

- This is a 40 point homework. For Problem 1, Parts 1-2 are worth 2 points each, and Parts 3-4 are worth 3 points each. For Problem 2, Parts 1-4 are worth 2 points each, and Parts 5-8 are worth 3 points each.
- Problem 3 is a programming assignment. For this problem, you are free to use any programming language you wish. Please email your code to cse151homeworks@gmail.com

Problem 1: 8 points

In the following problems, suppose that K, K_1 and K_2 are kernels with feature maps ϕ, ϕ^1 and ϕ^2. For the following functions $K'(x, z)$, state if they are kernels or not. If they are kernels, write down the corresponding feature map, in terms of ϕ, ϕ^1, ϕ^2 and c, c_1, c_2. If they are not kernels, prove that they are not.

1. $K'(x, z) = cK(x, z)$, for $c > 0$.
2. $K'(x, z) = cK(x, z)$, where $c < 0$, and there exists some x for which $K(x, x) > 0$.
3. $K'(x, z) = c_1 K_1(x, z) + c_2 K_2(x, z)$ for $c_1, c_2 > 0$.
4. $K'(x, z) = K_1(x, z) K_2(x, z)$.

Solution

1. Suppose $K(x, z) = \langle \phi(x), \phi(z) \rangle$ for some feature map ϕ, and let $\phi'(x) = \sqrt{c}\phi(x)$. Then, for all x and z,
 \[K'(x, z) = cK(x, z) = c\langle \phi(x), \phi(z) \rangle = \langle \sqrt{c}\phi(x), \sqrt{c}\phi(z) \rangle \]
 Therefore $K'(x, z)$ is a kernel corresponding to the feature map ϕ'.

2. Suppose x_0 is the x for which $K(x, x) > 0$. Consider the 1×1 kernel matrix $K' = K'(x_0, x_0)$ for the kernel K' and the data point x_0. Then, $K' = cK(x_0, x_0)$. If $z = 1$, then $z^T K' z = cK(x_0, x_0) < 0$, which violates the kernel Positive Semi Definiteness (PSD) property. Thus K' is not a kernel.

3. Suppose $K_1(x, z) = \langle \phi^1(x), \phi^1(z) \rangle$ and $K_2(x, z) = \langle \phi^2(x), \phi^2(z) \rangle$. Then, for all x and z,
 \[
 K'(x, z) = c_1 \langle \phi^1(x), \phi^1(z) \rangle + c_2 \langle \phi^2(x), \phi^2(z) \rangle = \langle \sqrt{c_1}\phi^1(x), \sqrt{c_1}\phi^1(z) \rangle + \langle \sqrt{c_2}\phi^2(x), \sqrt{c_2}\phi^2(z) \rangle
 = \langle \phi'(x), \phi'(z) \rangle
 \]
 where $\phi'(x)$ is a concatenation of the feature maps $\sqrt{c_1}\phi^1(x)$ and $\sqrt{c_2}\phi^2(x)$. In other words, if the feature maps ϕ^1 and ϕ^2 have m_1 and m_2 coordinates respectively, then ϕ' has $m_1 + m_2$ coordinates; for any x, the first m_1 coordinates of $\phi'(x)$ are $\sqrt{c_1}\phi^1_1(x), \sqrt{c_1}\phi^1_2(x), \ldots, \sqrt{c_1}\phi^1_{m_1}(x)$ and the remaining m_2 coordinates of $\phi'(x)$ are $\sqrt{c_2}\phi^2_1(x), \sqrt{c_2}\phi^2_2(x), \ldots, \sqrt{c_2}\phi^2_{m_2}(x)$. Therefore $K'(x, z)$ is a kernel corresponding to the feature map ϕ'.
Problem 2: 14 points

For the following functions $K(x, z)$, state if it is a kernel or not. If the function is a kernel, then write down its feature map. If it is not a kernel, prove that it is not one.

1. $x = [x_1, x_2], z = [z_1, z_2], x_1, x_2, z_1, z_2$ are real numbers. $K(x, z) = x_1 z_2.$

2. Let $x = [x_1, \ldots, x_d], z = [z_1, \ldots, z_d], x_i$s and z_is are real numbers. $K(x, z) = 1 - \langle x, z \rangle.$

3. $x = [x_1, \ldots, x_d], z = [z_1, \ldots, z_d],$ and f is a function. $K(x, z) = f(x_1, x_2)f(z_1, z_2).$

4. $x = [x_1, \ldots, x_d], z = [z_1, \ldots, z_d], x_i$s and z_is are integers between 0 and 100. $K(x, z) = \sum_{i=1}^d \min(x_i, z_i).$

5. $x = [x_1, \ldots, x_d], z = [z_1, \ldots, z_d], x_i$s and z_is are real numbers.

$$K(x, z) = (1 + x_1 z_1)(1 + x_2 z_2) \ldots (1 + x_d z_d)$$

6. $x = [x_1, \ldots, x_d], z = [z_1, \ldots, z_d], x_i$s and z_is are integers between 0 and 100. $K(x, z) = \sum_{i=1}^d \max(x_i, z_i).$

7. x are z are documents with words from some dictionary D. $K(x, z)$ is the number of words that occur in both x and $z,$ where each unique common word is counted once.

Solution

1. $K(x, z)$ is not a kernel.

 For $x = [1, -1],$ we have $K(x, x) = 1 \times -1 = -1.$ The corresponding kernel matrix $K = -1.$ For $v = 1,$ $v^\top K v = -1 < 0,$ which violates the PSD property. Thus K is not a kernel.

2. $K(x, z)$ is not a kernel.

 For $x = [2, 2, \ldots],$ we have $K(x, x) = 1 - \langle x, x \rangle = 1 - 4d.$ The corresponding kernel matrix $K = 1 - 4d.$ For $v = 1,$ $v^\top K v = 1 - 4d < 0,$ which violates the kernel PSD property for $d > 0.$ Thus K is not a kernel.
3. \(K(x, z) \) is a kernel corresponding to the feature map \(\phi(x) = f(x_1, x_2) \).

4. \(K(x, z) \) is a kernel.
 Let \(K_i(x, z) = \min(x_i, z_i) \). From Problem 1, we know that the sum of two kernels \(K_1 \) and \(K_2 \) is also a kernel whose corresponding feature map is the concatenation of the feature maps corresponding to \(K_1 \) and \(K_2 \). Thus if we can find the feature maps for all \(K_i(x, z) \), then we can get the feature map for \(K(x, z) \) by concatenating these maps. Consider following feature map:
 \[
 \phi_i(x) = [f_1(x_i), f_2(x_i), \ldots, f_{100}(x_i)]^\top
 \]
 where \(f_k(t) = I(t \geq k) = \begin{cases} 1 & t \geq k \\ 0 & t < k \end{cases} \). Without loss of generality, suppose that \(x_i \leq z_i \). Then \(\phi_i(x) = [1, \ldots, 1, 0, \ldots, 0]^\top \) where only the first \(x_i \) entries are 1. Analogously, \(\phi_i(z) = [1, \ldots, 1, 0, \ldots, 0]^\top \) where only the first \(z_i \) entries are 1. Then
 \[
 \langle \phi_i(x), \phi_i(z) \rangle = \sum_{i=1}^{x_i} 1 \cdot 1 + \sum_{i=x_i+1}^{z_i} 0 \cdot 1 + \sum_{i=z_i+1}^{100} 0 \cdot 0 = x_i = \min(x_i, z_i)
 \]
 Therefore \(K_i(x, z) \) is a kernel corresponding to the feature map \(\phi_i(x) = [f_1(x_i), f_2(x_i), \ldots, f_{100}(x_i)]^\top \), and \(K(x, z) \) is a kernel corresponding to the feature map \(\phi(x) \) which is a concatenation of the feature maps \(\phi_1(x), \phi_2(x), \ldots, \phi_{100}(x) \).

5. \(K(x, z) \) is a kernel.
 Let \(K_i(x, z) = 1 + x_i z_i \), then \(K(x, z) = \prod_{i=0}^{d} K_i(x) \). From Problem 1, we know that the product of two kernels is also a kernel. Since \(K_i(x, z) \) is a kernel corresponding to the feature map \(\phi_i(x) = [1, x_i]^\top \), \(K(x, z) \) is also a kernel. More specifically, \(K(x, z) \) is a kernel corresponding to the feature map \(\phi(x) \), where for any \(x \), \(\phi(x) \) has \(2d \) coordinates, one corresponding to each subset \(S \) of \(\{1, 2, \ldots, d\} \). \(\phi_S(x) \), the coordinate of \(\phi(x) \) corresponding to the set \(S \) is \(\prod_{i \in S} x_i \). This kernel is called the All Subsets kernel.

6. \(K(x, z) \) is not a kernel.
 One way to prove this is by showing a violation of the PSD property. Let \(x = [0, \ldots, 0] \), \(z = [1, 0, \ldots, 0] \) and \(v = [1, -1]^\top \). Then the kernel matrix
 \[
 K = \begin{bmatrix}
 K(x, x) & K(x, z) \\
 K(z, x) & K(z, z)
 \end{bmatrix} = \begin{bmatrix}
 0 & 1 \\
 1 & 1
 \end{bmatrix}
 \]
 Thus, \(v^\top K v = -1 < 0 \), which violates positivity.
 Another nice way is through a violation of the Cauchy-Schwartz inequality. Consider \(x = [0, \ldots, 0] \) and \(z = [1, 0, \ldots, 0] \). Then \(K(x, x) = 0, K(x, z) = K(z, x) = 1 \), which violates Cauchy-Schwartz inequality – that is \(K(x, z)^2 \geq K(x, x) \cdot K(z, z) \).

7. \(K \) is a kernel. The feature map \(\phi \) has a coordinate for each word \(u \) in the dictionary \(D \). Given a document \(x \), the coordinate of \(\phi(x) \) corresponding to word \(u \), \(\phi_u(x) \), is 1 if \(x \) contains the word \(u \) and 0 otherwise. Notice that this kernel is very similar to the string kernel we discussed in class.

Problem 3: Programming Assignment: 18 points

In this problem, we will look at classifying protein sequences according to whether they belong to a particular protein family or not. For this task, we will use the string kernel that we discussed in class, as well as a modified version of this kernel. Download the files `hw5train.txt` and `hw5test.txt` from the class website. These files contain your training and test data sets respectively.
The data files are in ASCII text format, and each line of the file contains a string, which represents a protein sequence, followed by a label, which is 1 or −1, to indicate whether the protein sequence belongs to a protein family or not. Each letter in the protein sequence represents an amino acid, and thus the alphabet size is $|\Sigma| = 21$ (20 amino acids + a symbol to represent missing data). Different protein sequences in the file have different length; this is not surprising because even the same protein will have different lengths in different species, for example, in mouse and human. Assume that the data is linearly separable by a hyperplane through the origin. Run a single pass of kernel perceptron algorithm on the training dataset to find a classifier that separates the two classes.

1. First, we will use the string kernel function for our kernel. Recall from class that given two strings s and t, the string kernel $K_p(s, t)$ is the number of substrings of length p that are common to both s and t, where a string that occurs a times in s and b times in t is counted ab times.

For this problem, use $p = 3$, $p = 4$ and $p = 5$. Write down the training and test errors of kernel perceptron for $p = 3, 4, 5$ on this dataset.

[Hint: If your code is correct, the training error for $p = 2$ will be about 0.0711.]

2. Next, repeat Part (1) with a slight modification of the string kernel, $M_p(s, t)$. Given two strings s and t, the modified string kernel $M_p(s, t)$ is the number of substrings of length p that are common to both s and t, where a string that occurs a times in s and b times in t is counted only once. What are the training and test errors for this kernel for $p = 3, 4, 5$?

3. Finally, we will try to interpret the classifier that we built. For this, consider the kernel perceptron classifier w from part (1) for $p = 5$. This classifier can be written in the form: $w = \sum_{i}^{n} \alpha_i \phi(x_i)$, where x_i-s are the training data points, and ϕ is the feature map corresponding to the string kernel. Recall from lecture that ϕ has 21^5 coordinates, where each coordinate corresponds to a substring of size 5 on the alphabet Σ.

Find the two coordinates in w with the highest positive values. You should be able to do this without explicitly computing all the coordinates of w. What are the substrings corresponding to these coordinates? These coordinates correspond to those substrings whose presence most strongly indicates that the protein belongs in the family.

Solution

1. After a single pass of the kernel perceptron algorithm, the training error and test error are listed as follows:

<table>
<thead>
<tr>
<th>p</th>
<th>training error</th>
<th>test error</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1.35%</td>
<td>4.09%</td>
</tr>
<tr>
<td>4</td>
<td>0.716%</td>
<td>2.90%</td>
</tr>
<tr>
<td>5</td>
<td>0.634%</td>
<td>4.62%</td>
</tr>
</tbody>
</table>

2. After a single pass of the kernel perceptron algorithm, the training error and test error are listed as follows:

<table>
<thead>
<tr>
<th>p</th>
<th>training error</th>
<th>test error</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1.29%</td>
<td>5.27%</td>
</tr>
<tr>
<td>4</td>
<td>0.881%</td>
<td>2.90%</td>
</tr>
<tr>
<td>5</td>
<td>0.606%</td>
<td>4.35%</td>
</tr>
</tbody>
</table>

3. There are 5 strings tied for first place. They are ‘DTAGQ’, ‘KVGPD’, ‘LFLNK’, ‘WDTAG’ and ‘GKSSL’.