Margins:
- Data linearly separable with a margin.
 - Perceptron stops once a separator is found, but we may want to compute the max-margin separator.

Max-margin separators are computed by Support Vector Machines (SVMs).

Linear Classification by a Hyperplane not thru Origin

We can transform this problem to linear classification by a hyperplane through the origin.

Original Problem:
Training data: \((x_i, y_i), i=1, \ldots, n, \ x_i \in \mathbb{R}^d, \ y_i \in \{-1, 1\}\)
Separating hyperplane: \(a^T x + b = 0\)
\((a \in \mathbb{R}^d, \ b = a \text{ scalar})\)

Transform it to:
Training data: \((z_i, y_i), i=1, \ldots, n, \ z_i = [\frac{x_i}{\|x_i\|}] \in \mathbb{R}^d, \ y_i \in \{-1, 1\}\)
Separating hyperplane: \(a^T z + b = 0\)
For all $i = 1, \ldots, n$,

$y_i < z_i, [b] > = y_i < [1, x_i], [b] > = y_i (b + a^T x_i) > 0$

(as (x_i, y_i) are linearly separable)

Thus, if (x_i, y_i)'s have a separating hyperplane, then
then (z_i, y_i)'s have a separating hyperplane thru origin.

Now suppose (z_i, y_i)'s are linearly separable $\&$ through the
origin. Then, \exists a vector $v = [a] \ s.t. \ for \ all \ i,$

$y_i v^T z_i > 0.$

Now: $y_i v^T z_i = y_i < [a], [1, x_i] > = y_i (a + v^T x_i) > 0.$

which means, (x_i, y_i)'s are linearly separable.

Multiclass Classification:

- Where there are >2 classes.
- For linear multiclass classification, reduce to many binary
 problems.

One-vs-All (OVA) Reduction:

- k classes
- Solve k binary classification problems (one per class)

 Class 1 vs. Rest, Class 2 vs. Rest, .., Class k vs. Rest

 Not class 1

- On a test example, if you always get a single answer.
 (i.e. you get class i in Class i vs. Rest, get Rest
 in all other cases), predict class i.

 O/w: there are a few options - predict Don't Know or
 tie break at random, or using some other rule.
All-vs-All (AVA) Reduction:

- k classes
- Solve $M = \binom{k}{2} = \frac{k(k-1)}{2}$ binary classification problems
- Class 1 vs. 2, 1 vs. 3, ..., 1 vs. k.
 2 vs. 3, ..., etc.
 Essentially class i vs. j, for $i = 1, ..., k$
 $j = i+1, ..., k$.
- On a test example, pick the most frequently assigned label.
 eg. if $k = 3$, and you get the following results:
 1 vs. 2 : 1
 2 vs. 3 : 2
 1 vs. 3 : 1
- If you get a tie, predict Don't Know.

Confusion Matrix:

k classes, $k \times k$ matrix.

$M_{ij} =$ #examples with label j that are classified as label i

$N_j =$ #examples with label j

$C_{ij} = M_{ij} / N_j$ (C = confusion matrix)

Measures which classes are easy/hard to separate.

High diagonal entry \Rightarrow class easy to classify
High off-diagonal entry \Rightarrow two classes easily confused.
Comparison:

kNN vs. Decision Trees vs. Linear classifiers.

1. Training time. \((kNN < DT, LC) \)
2. Testing time. \((kNN \text{ large}, DT, LC \text{ relatively lower}) \)
3. Storage. \((kNN \text{ large}, DT, LC \text{ less}) \)
4. Performance on high dimensional data. \((LC \text{ best}, DT \text{ sometimes excellent, KNN only when you can find the right features}) \)
5. Flexibility of Decision Boundary.
 \((kNN \text{ very flexible, DT less so, least flexible is LC}) \)