Boosting

Sometimes it is:
- easy to come up with simple, easy to use, rules of thumb classifiers
- but hard to come up with a single highly accurate rule.

Examples:

(1) Spam classification, based on email text.
 Certain words, eg. "Nigeria", "Online Pharmacy", etc. typically
 are a good indicator of spam.
 Rule of thumb: Does email contain word "Nigeria"?

(2) Detect if an image has a face in it.

 On an average, pixels around the eyes
 are darker than those below.
 Rule of thumb: Is the (average darkness
 in the shaded region) - (average darkness in
 the white rectangular region below) > 0?

Boosting gives us a way to combine these weak rules of thumb into good classifiers.

Definitions:

1. Weak Learner: A simple rule of thumb that doesn't
 necessarily work very well.

2. Strong Learner: A good classifier (with high accuracy)
Boosting Procedure:

1. Design method to find a good rule of thumb.
2. Repeat:
 - Find a good rule of thumb
 - Modify training data to get a second data set
 - Apply method of to new data set to get a good rule of thumb, and so on.

1. How to get a good rule of thumb? Application specific (more later)
2. How to modify training data set?
 - Give highest weight to the hardest examples — those that were misclassified more often by previous rules of thumb.
3. How to combine the rules of thumb into a prediction rule?
 Take a weighted majority of the rules.

Let \(D \) be a distribution over labelled examples, and let \(h \) be a classifier.

Error of \(h \) w.r.t. \(D \) is:

\[
\text{err}_D(h) = \Pr_{(x,y) \in D} [h(x) \neq y]
\]

Example: \(D \):

\[X: \text{ takes values } \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1, \text{ each w.p. } \frac{1}{4}. \]

\[Y = 1 \text{ if } X \text{ has a value } > \frac{1}{2}, \text{ o/w } Y = 0. \]

Then if \(h \) is the rule:

\[h(x) = 1 \text{ if } x > \frac{1}{4} \]

\[= 0 \text{ o/w.} \]

Then, \(\text{err}(h) = \frac{1}{4} \).
→ h is called a **weak learner** if \(\text{err}_D(h) < 0.5 \)

→ Error of random guessing is 0.5 (with 2 labels)

Given training examples \((x_1, y_1), \ldots, (x_n, y_n)\), we can assign weights \(w_1, \ldots, w_n\) to these examples. If \(\sum_{i=1}^{n} w_i = 1, w_i > 0\), we can think of these weights as a probability distribution over the examples.

Error of a classifier \(h \) wrt \(W \) is:

\[
\text{err}_W(h) = \sum_{i=1}^{n} w_i \cdot 1(h(x_i) \neq y_i)
\]

1 is the indicator function, where 1(\(P\)) = 1 if \(P\) is true = 0 otherwise.

Boosting Algorithm:

Input: Training set \(S = \{(x_1, y_1), \ldots, (x_n, y_n)\}, \ y_i = \pm 1 \)

\(D_1(i) = \frac{1}{n} \) for all \(i = 1, \ldots, n \)

For \(t = 1, 2, 3, \ldots \)

\(h_t = \text{weak-learner wrt } D_t. \) (so, \(\text{err}_{D_t}(h_t) < 0.5 \))

\(E_t = \text{err}_{D_t}(h_t) \)

\[
\alpha_t = \frac{1}{2} \ln \frac{1-E_t}{E_t}
\]

(\(\alpha_t \) is high when \(E_t \) is low, and almost 0 when \(E_t \) is close to 0.5)

\[
D_{t+1}(i) = \frac{D_t(i) e^{-\alpha_t y_i h_t(x_i)}}{Z_t}
\]

(\(D_{t+1} \) goes up if \(i \) is misclassified by \(h_t \); so higher \(D_t \) means harder example.

where \(Z_t \) is a normalization constant to ensure that \(\sum_{i} D_{t+1}(i) = 1 \).

Final classifier: \(H(x) = \text{sign} \left(\sum_{t=1}^{T} \alpha_t h_t(x) \right) \) (weighted majority)
Example of Weighted Error:

Suppose training data is:
\[(0, 0), 1), (1, 0), 1), ((0, 1), -1)\]

weights \(W:\)
\[
\begin{align*}
W_1 &= \frac{1}{2} \\
W_2 &= \frac{1}{4} \\
W_3 &= \frac{1}{4}
\end{align*}
\]

Classification rule: Predict 1 if \(x_1 \leq \frac{1}{2}\), -1 otherwise.

\[\text{err}_W(h) = \frac{1}{2} \times 0 + \frac{1}{4} \times 1 + \frac{1}{4} \times 0 = \frac{1}{2}\]

(The usual (unweighted) error would be \(2/3\)).

Boosting Algorithm Example:

Training data:

\[
\begin{align*}
&((1, 1), +) \quad ((2, 1), -) \quad ((4, 1), -) \\
&((1, 2), +) \quad ((2, 2), -) \quad ((3, 2), -) \\
&((2, 3), +) \quad ((3, 3), +) \quad ((4, 3), -) \\
&((3, 4), +)
\end{align*}
\]

Initially: \(D_1(i) = 0.1\) (for all \(i\))

Suppose \(h_1\)

Weak learners: Set of vertical and horizontal thresholds.

1. Suppose we pick \(h_1(x) = +\) if \(x_1 \leq 1.5\)

 \(-\) otherwise

 Name the points: \(a, b, \ldots, j\) (for ease of understanding)

Then:

\[
\text{err}_{D_1}(h_1) = \varepsilon_1 = 0.3 \quad \alpha_1 = 0.42
\]

Weights of \(a, b, c, d, e, f, g\): \(D_2 = 0.07\)

Weights of \(h, i, j\): \(D_2 = 0.17\)

\[
\begin{align*}
2_2 &= 7 \times e^{-0.42} \times 0.1 + 3 \times 0.1 \times e^{0.42} \\
&= 0.92
\end{align*}
\]

Note: Calculations rounded to 2 decimal places.
In Round 2, suppose we pick
\[h_2(x) = + \text{ if } x_2 > 2.5 \]
\[= - \text{ otherwise.} \]
\[\text{err}_{D_2}(h_2) = \varepsilon_2 = 0.21 \]
\[\alpha_2 = 0.66 \]

Weights of \(a, b \): \[D_3 := 0.07 \times e^{0.66} / Z_3 = 0.17 \]

Weights of \(c, d, e, f \): \[D_3 := 0.07 \times e^{0.66} / Z_3 = 0.04 \]

Weights of \(h, i, j \): \[D_3 := 0.17 \times e^{0.66} / Z_3 = 0.11 \]

Weight of \(g \): \[D_3 := 0.07 \times e^{0.66} / Z_3 = 0.17 \]
\[Z_3 = 0.81 \]

In Round 3, suppose we pick:
\[h_3(x) = + \text{ if } x_1 < 3.5 \]
\[= - \text{ otherwise.} \]
\[\text{err}_{D_3}(h_3) = \varepsilon_3 = 0.12 \]
\[\alpha_3 = 0.99 \]

Weights of \(a, b \): \[D_4 := 0.17 \times e^{-0.99} / Z_4 = 0.2 \]

" " " \(c, d, e \): \[D_4 := 0.04 \times e^{-0.99} / Z_4 = 0.17 \]

" " " \(h, i, j \): \[D_4 := 0.11 \times e^{-0.99} / Z_4 = 0.06 \]

" " " \(f \): \[D_4 := 0.04 \times e^{-0.99} / Z_4 = 0.02 \]

" " " \(g \): \[D_4 := 0.17 \times e^{-0.99} / Z_4 = 0.1 \]

Final classifier: \[\text{sign}(\alpha_4 h_1(x) + \alpha_2 h_2(x) + \alpha_3 h_3(x)) \]
\[= \text{sign}(0.42 h_1(x) + 0.66 h_2(x) + 0.99 h_3(x)) \]
When to stop boosting? Use a validation dataset to find a stopping time.
Stop when validation error does not improve.

Boosting and Overfitting:

Overfitting can happen with boosting, but often does not.

Typical boosting run:

Reason is that the margin of classification often increases with boosting.

Intuitively, margin of classification measures how far the + labels are from the - labels.

```
+++  ++  ++  +  +  +  +  +  +  +
---  ---  ---  ---  ---  ---  ---  ---  ---
Small Margin   Large Margin
```

For boosting:
- think of each \(h_t() \) as a feature
- Feature space is:
 \[
 [h_1(x), h_2(x), \ldots, h_T(x)]
 \]
- Margin of example \(x \) is:
 \[
 \left| \sum_{t=1}^{T} \alpha_t h_t(x) \right|
 \]
- If you have large margin data, then classifiers need less training examples to avoid overfitting. (This is also why kernels work, even if they are very high dimensional feature space.)

Note: Notion of margin for boosting is a little different from the exact way we defined margin for perceptron, but the difference is fairly technical.
Applications of Boosting:

1. Boosted Decision Trees:

Weak learners are single node decision trees of the form:

```
Is feature f \leq t

Yes  No

Predict 1  Predict -1
```

2. Face detection: Viola and Jones: see slides.