CSE 140: Components and Design Techniques for Digital Systems

Discussion Session 1

Nima Mousavi

Mousavi@ucsd.edu
Outline

- CMOS transistor as a switch
- Logic gates with CMOS transistors
- Introduction to Boolean Algebra
- Universal Gate
 - NOR
 - NAND
CMOS Transistor as a Switch

nMOS

pMOS
Logic gates with CMOS transistors

What logical gate does this circuit correspond to?

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Boolean Algebra

- A set of rules to simplify logical expressions.
- For example: De Morgan’s Theorem
 - $A_1 \cdot A_2 \cdot A_3 \cdot \ldots \cdot A_N = \overline{A_1 + A_2 + A_3 + \ldots + A_N}$
 - $A_1 + A_2 + A_3 + \ldots + A_N = \overline{A_1 \cdot A_2 \cdot A_3 \cdot \ldots \cdot A_N}$
- Proof for 2 variables:

 $A \cdot B = \overline{A} + \overline{B}$
Simplify the following Boolean expressions using Boolean algebra. Label each step with the name of the Boolean theorem that you applied.

\[\overline{X} + \overline{Y} + XY\overline{Z} \quad (hint: \overline{A} = A) \]

Solution:
Universal Gate

- Implement following logical expressions using NOR gate only.
- $H = a'b + ab'$
Universal Gate

- Implement following logical expressions using NAND gate only.
- \(H = a'b + ab' \)