Lecture 9: Internetworking

CSE 123: Computer Networks
Alex C. Snoeren

HW 1 due WEDNESDAY
TCP/IP Protocol Stack

Application Layer

Transport Layer

Network Layer

Link Layer

host

router

CSE 123 – Lecture 9: Internetworking
IP Networking

Router

data packet

Ethernet

FDDI

CSE 123 – Lecture 9: Internetworking
Routers

- A router is a store-and-forward device
 - Routers are connected to multiple networks
 - On each network, looks just like another host
 - A lot like a switch, but supports multiple datalink layers and makes decisions at the network layer

- Must be explicitly addressed by incoming frames (L2)
 - Not at all like a switch, which is transparent
 - Removes link-layer header, parses IP header (L3)

- Looks up next hop, forwards on appropriate network
 - Each router need only get one step closer to destination
IP Philosophy

- Impose few demands on network
 - Make few assumptions about what network can do
 - No QoS, no reliability, no ordering, no large packets
 - No persistent state about communications; no connections

- Manage heterogeneity at hosts (not in network)
 - Adapt to underlying network heterogeneity
 - Re-order packets, detect errors, retransmit lost messages...
 - Persistent network state only kept in hosts (fate-sharing)

- Service model: best effort, a.k.a. send and pray
IP Packet Header

<table>
<thead>
<tr>
<th>0</th>
<th>15</th>
<th>16</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>ver</td>
<td>HL</td>
<td>TOS</td>
<td>length</td>
</tr>
<tr>
<td>identification</td>
<td>RES</td>
<td>MF</td>
<td>DF</td>
</tr>
<tr>
<td>TTL</td>
<td>protocol</td>
<td>header checksum</td>
<td></td>
</tr>
<tr>
<td>source address</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>destination address</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>options (if any)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>data (if any)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Version field

- Which version of IP is this?
 - Plan for change
 - Very important!

- Current versions
 - 4: most of Internet today
 - 6: new protocol with larger addresses
 - What happened to 5? Standards body politics.
Header length

- How big is IP header?
 - Counted in 32-bit words
 - Variable length
 » Options
 - Engineering consequences of variable length…

- Most IP packet headers are 20 bytes long
Type-of-Service

- How should this packet be treated?
 - Care/don’t care for delay, throughput, reliability, cost
 - How to interpret, how to apply on underlying net?
 - Largely unused until 2000 (hijacked for new purposes, ECN & Diffserv)
Length

- How long is whole packet in bytes?
 - Includes header
 - Limits total packet to 64K
 - Redundant?
TTL (Time-to-Live)

- How many more routers can this packet pass through?
 - Designed to limit packet from looping forever

- Each router decrements TTL field

- If TTL is 0 then router discards packet
Protocol

- Which transport protocol is the data using?
 - i.e. how should a host interpret the data

- TCP = 6
- UDP = 17
IP Checksum

- Header contains simple checksum
 - Validates content of header only
- Recalculated at each hop
 - Routers need to update TTL
 - Hence straightforward to modify
- Ensures correct destination receives packet
So what does IP do?

- Addressing
- Fragmentation
 - E.g. FDDI’s maximum packet is 4500 bytes while Ethernet is 1500 bytes, how to manage this?
- Some error detection
- Routers only forward packets to next hop
 - They do not:
 - Detect packet loss, packet duplication
 - Reassemble or retransmit packets
- Today we’ll talk about fragmentation
Fragmentation

- Different networks may have different maximum frame sizes
 - Maximum Transmission Unit (MTUs)
 - Ethernet 1.5K, FDDI 4.5K
- Router breaks up single IP packet into two or more smaller IP packets
 - Each fragment is labeled so it can be correctly reassembled
 - End host reassembles them into original packet
IP ID and Bitflags

- Source inserts unique value in identification field
 - Also known as the IPID
 - If packet is fragmented, the router copies this value into any fragments
- Offset field indicates position of current fragment (in bytes/8)
 - Zero for non-fragmented packet
- Bitflags provide additional information
 - More Fragments bit helps identify last fragment
 - Don’t Fragment bit prohibits (further) fragmentation
 - Note recursive fragmentation easily supported—just requires care with More Fragments bit
Fragmentation Example

One large datagram becomes several smaller datagrams

(Offset actually encoded as bytes/8)
Costs of Fragmentation

- Interplay between fragmentation and retransmission
 - A single lost fragment may trigger retransmission
 - Any retransmission will be of entire packet (why?)

- Packet must be completely reassembled before it can be consumed on the receiving host
 - Takes up buffer space in the mean time
 - When can it be garbage collected?

- Why not reassemble at each router?
For Next Time

- Read 3.2.5 in P&D
- Homework 2 due WEDNESDAY
- Project 1 due FRIDAY!