Lecture 26: Final Review

Project 2 due tonight!
Exam Overview

- Focus on topics since the midterm
 - But everything is fair game…

- Roughtly the same style & length as midterm
 - It won’t take the whole time
 - We’ll spend the first few minutes of the exam period awarding the Espresso Prize

- As with the midterm, you can bring crib sheet
 - One double-sided 8x5.x11” paper that you turn in
TCP/IP Protocol Stack

- **Application Layer**
 - HTTP

- **Transport Layer**
 - TCP

- **Network Layer**
 - IP
 - Ethernet interface
 - SONET interface

- **Link Layer**
 - Ethernet interface

Host

Router
Encapsulation via Headers

- Typical Web packet

- Notice that layers add overhead
 - Space (headers), effective bandwidth
 - Time (processing headers, “peeling the onion”), latency
Phy/(MAC)Link layer

- Signal encoding
 - Encode binary data from source node into signals that physical links carry
 - Signal is decoded back into binary data at receiving node
 - Work performed by network adapter at sender and receiver

- Media access
 - Arbitrate which nodes can send frames at any point in time
 - Not always necessary; e.g. point-to-point duplex links
Host at \texttt{cis.poly.edu} wants IP address for \texttt{gaia.cs.umass.edu}.

1. Requesting host \texttt{cis.poly.edu} sends a query to its local DNS server \texttt{dns.poly.edu}.
2. Local DNS server \texttt{dns.poly.edu} forwards the query to the root DNS server.
3. Root DNS server replies with the address of the TLD DNS server.
4. Local DNS server \texttt{dns.poly.edu} sends a query to the TLD DNS server.
5. TLD DNS server \texttt{dns.cs.umass.edu} replies with the address of the authoritative DNS server.
6. Local DNS server \texttt{dns.poly.edu} sends a query to the authoritative DNS server \texttt{dns.cs.umass.edu}.
7. Authoritative DNS server \texttt{dns.cs.umass.edu} replies with the IP address of \texttt{gaia.cs.umass.edu}.
8. Local DNS server \texttt{dns.poly.edu} returns the IP address to the requesting host \texttt{cis.poly.edu}.
NA(p)T Example

2: NAT router changes packet source addr from 10.0.0.1:3345 to 138.76.29.7:5001, updates table

3: Reply arrives dest. address: 138.76.29.7:5001

4: NAT router changes packet dest addr from 138.76.29.7:5001 to 10.0.0.4:3345
Routing Challenges

- How to choose best path?
 - Defining “best” can be slippery

- How to scale to millions of users?
 - Minimize control messages and routing table size

- How to adapt to failures or changes?
 - Node and link failures, plus message loss
Forwarding Options

- **Source routing**
 - Complete path listed in packet

- **Virtual circuits**
 - Set up path out-of-band and store path identifier in routers
 - Local path identifier in packet

- **Destination-based forwarding**
 - Router looks up address in forwarding table
 - Forwarding table contains (address, next-hop) tuples
Link-state Routing

● Two phases
 ◆ Reliable flooding
 » Tell all routers what you know about your local topology
 ◆ Path calculation (Dijkstra’s algorithm)
 » Each router computes best path over complete network

● Motivation
 ◆ Global information allows optimal route computation
 ◆ Straightforward to implement and verify
Dijkstra’s Shortest Path Tree

- So you have all of these LSPs. Now what?
- Graph algorithm for single-source shortest path tree
 (find best route to all nodes)

\[
\begin{align*}
S & \leftarrow \emptyset \\
Q & \leftarrow \text{<remaining nodes keyed by distance>} \\
\text{While } Q \neq \emptyset & \\
& \quad u \leftarrow \text{extract-min}(Q) \quad u = \text{node with lowest cost} \\
& \quad S \leftarrow S \text{ plus } \{u\} \\
& \quad \text{Within } Q: \\
& \quad \quad \text{for each node } v \text{ adjacent to } u \\
& \quad \quad \quad \text{“relax” the cost of } v \\
& \quad \quad \quad \quad \text{is it cheaper to go through } u? \\
\end{align*}
\]
Distance Vector Algorithm

Iterative, asynchronous: each local iteration caused by:
- Local link cost change
- Distance vector update message from neighbor

Distributed:
- Each node notifies neighbors when its DV changes
- Neighbors then notify their neighbors if necessary

Each node:

wait for (change in local link cost or message from neighbor)

recompute estimates

if distance to any destination has changed, notify neighbors
Bellman-Ford Algorithm

- Define distances at each node X
 - $d_x(y) = \text{cost of least-cost path from } X \text{ to } Y$
- Update distances based on neighbors
 - $d_x(y) = \min \{c(x,v) + d_v(y)\}$ over all neighbors V

\[
d_{u}(z) = \min\{c(u,v) + d_v(z), c(u,w) + d_w(z)\}
\]
Problem: Counting to Infinity

Distance to C

CSE 123 – Lecture 26: Final Review
Mitigation Strategies

- **Hold downs**
 - As metric increases, delay propagating information
 - Limitation: Delays convergence

- **Loop avoidance**
 - Full path information in route advertisement
 - Explicit queries for loops

- **Split horizon**
 - Never advertise a destination through its next hop
 » A doesn’t advertise C to B
 - **Poison reverse**: Send negative information when advertising a destination through its next hop
 » A advertises C to B with a metric of ∞
 » Limitation: Only works for “loop”s of size 2
Autonomous Systems

- Internet is divided into **Autonomous Systems**
 - Distinct regions of administrative control
 - Routers/links managed by a single “institution”
 - Service provider, company, university, …

- Hierarchy of Autonomous Systems
 - Large, “tier-1” provider with a nationwide backbone
 - Medium-sized regional provider with smaller backbone
 - Small network run by a single company or university

- Interaction between Autonomous Systems
 - Internal topology is not shared between ASes
 - … but, neighboring ASes interact to coordinate routing
Border routers summarize and advertise their routes to external neighbors and vice-versa.
- Border routers apply policy

Internal routers can use notion of default routes

Core is default-free; routers must have a route to all networks in the world

But what routing protocol?
Path-vector Routing

- Extension of distance-vector routing
 - Support flexible routing policies
 - Avoid count-to-infinity problem
- Key idea: advertise the entire path
 - Distance vector: send *distance metric* per destination
 - Path vector: send the *entire path* for each destination
Destination prefix (e.g., 128.112.0.0/16)

Route attributes, including
- AS path (e.g., “7018 88”)
- Next-hop IP address (e.g., 12.127.0.121)
Business Relationships

- Neighboring ASes have business contracts
 - How much traffic to carry
 - Which destinations to reach
 - How much money to pay

- Common business relationships
 - Customer-provider
 » E.g., Princeton is a customer of USLEC
 » E.g., MIT is a customer of Level3
 - Peer-peer
 » E.g., UUNET is a peer of Sprint
 » E.g., Harvard is a peer of Harvard Business School
Functional architecture

Control Plane
- Complex
- Per-control action
- May be slow

Data plane
- Simple
- Per-packet
- Must be fast
Interconnect architecture

- Input & output connected via switch fabric

- Kinds of switch fabric
 - Shared Memory
 - Bus
 - Crossbar

- How to deal with transient contention?
 - Input queuing
 - Output queuing
IQ + Virtual Output Queuing

- Input interfaces buffer packets in per-output virtual queues

- Pro
 - Solves blocking problem

- Con
 - More resources per port
 - Complex arbiter at switch
 - Still limited by input/output contention (scheduler)
Key Router Challenges

- **Buffer management**: which packet to drop when?
 - We only have finite-length queues
- **Scheduling**: which packet to transmit next?
RED Operation

Max thresh

Min thresh

Average Queue Length

P(drop)

1.0

\max_p

\min_{th} \max_{th} Avg queue length

CSE 123 – Lecture 26: Final Review
Token Bucket Basics

- Parameters
 - r – average rate, i.e., rate at which tokens fill the bucket
 - b – bucket depth (limits size of burst)
 - R – maximum link capacity or peak rate (optional parameter)
- A bit can be transmitted only when a token is available

![Diagram of token bucket](image)

- r bps
- b bits
- $\leq R$ bps
- $b \cdot \frac{R}{R-r}$
- $\frac{b}{R-r}$
- Maximum # of bits sent
- Slope r
- Slope R

CSE 123 – Lecture 26: Final Review
Rough definition: “When an increase in network load produces a decrease in useful work”

Why does it happen?
- Sender sends faster than bottleneck link speed
- Packets queue until dropped
- In response to packets being dropped, sender retransmits
- All hosts repeat in steady state…
Proactive vs. Reactive

- **Congestion avoidance**: try to stay to the left of the knee
- **Congestion control**: try to stay to the left of the cliff

![Diagram showing network load, throughput, latency, knee, cliff, and congestion collapse](image-url)
Window-based congestion control

- Unified congestion control and flow control mechanism
- $rwin$: advertised flow control window from receiver
- $cwnd$: congestion control window
 - Estimate of how much outstanding data network can deliver in a round-trip time
 - Sender can only send $\min(rwin, cwnd)$ at any time

Idea: decrease $cwnd$ when congestion is encountered; increase $cwnd$ otherwise

- Question: how much to adjust?
TCP Slow Start

Sender

cwnd=1

1

Ack 2

cwnd=2

2

3

Ack 3

Ack 4

cwnd=4

4

5

Ack 5

Ack 6

Ack 7

Ack 8

cwnd=8

Receiver

round-trip times

cwnd

0 1 2 3 4 5 6 7 8

0 50 100 150 200 250 300

CSE 123 – Lecture 26: Final Review
Basic TCP Mechanisms

Slow Start + Congestion Avoidance

- **cwnd**: Control Window
- **Timeout**: Time for data transmission
- **Congestion avoidance**: Reduces data transmission
- **ssthresh**: Switches from slow start to congestion avoidance

Round-trip times

CSE 123 – Lecture 26: Final Review
Fair Queuing

- Maintain a queue for each flow
 - What is a flow?

- Implements **max-min fairness**: each flow receives $\min(r_i, f)$, where
 - r_i – flow arrival rate
 - f – link fair rate (see next slide)

- **Weighted Fair Queuing (WFQ)** – associate a weight with each flow to divvy bandwidth up non-equally
Packet-Based WFQ

- Select the first packet that finishes in the fluid flow system
Signals and Channels

- **A signal** is some form of energy (light, voltage, etc)
 - Varies with time (on/off, high/low, etc.)
 - Can be continuous or discrete

- **A channel** is a physical medium that conveys energy
 - Any real channel will distort the input signal as it does so
 - How it distorts the signal depends on the signal
Carrier Signals

- **Baseband** modulation: send the “bare” signal
 - E.g. +5 Volts for 1, -5 Volts for 0
 - All signals fall in the same frequency range

- **Broadband** modulation
 - Use the signal to modulate a high frequency signal (carrier).
 - Can be viewed as the product of the two signals
Forms of Digital Modulation

Input Signal

Amplitude Shift Keying (ASK)

Frequency Shift Keying (FSK)

Phase Shift Keying (PSK)

Phase changes
Shannon’s Law

- Shannon considered noisy channels and derived

\[C = B \log (1 + S/N) \]

- Gives us an upper bound on any channel’s performance regardless of signaling scheme

- Old school modems approached this limit
 - \(B = 3000\text{Hz}, \ S/N = 30\text{dB} = 1000 \)
 - \(C = 3000 \times \log(1001) \approx 30\text{kbps} \)
 - 28.8Kbps – anyone remember dialup?
Nyquist Sampling Rate

- Sampling at the correct rate \((2f)\) yields actual signal
 - Always assume lowest-frequency wave that fits samples
- Sampling too slowly yields aliases
Clock Recovery

- Using a training sequence to get receiver lined up
 - Send a few, known initial training bits
 - Adds inefficiency: only m data bits out of n transmitted

- Need to combat clock drift as signal proceeds
 - Use transitions to keep clocks synched up

- Question is, how often do we do this?
 - Quick and dirty every time: asynchronous coding
 - Spend a lot of effort to get it right, but amortize over lots of data: synchronous coding
Manchester Encoding

- **Signal to Data**
 - XOR NRZ data with senders clock signal
 - High to low transition ➞ 1
 - Low to high transition ➞ 0

- **Comments**
 - Solves clock recovery problem
 - Only 50% efficient (½ bit per transition)
 - Still need preamble (typically 0101010101... trailing 11 in Ethernet)
Fixed Partitioning

FDMA

TDMA

CDMA

Courtesy Takashi Inoue
Aloha

- Designed in 1970 to support wireless data connectivity
 - Between Hawaiian Islands—rough!

- Goal: distributed access control (no central arbitrator)
 - Over a shared broadcast channel

- Aloha protocol in a nutshell:
 - When you have data send it
 - If data doesn’t get through (receiver sends acknowledgement) then **retransmit after a random delay**
 - Why not a fixed delay?
Q: What is max fraction slots successful?
A: Suppose \(n \) stations have packets to send

- Each transmits in slot with probability \(p \)
- \(\text{Prob}[\text{successful transmission}], S, \) is:

\[
S = p (1-p)^{(n-1)}
\]

- any of \(n \) nodes:

\[
S = \text{Prob}[\text{one transmits}] = np(1-p)^{(n-1)}
\]

(optimal \(p \) as \(n \to \infty \) = \(1/n \))

\[
= 1/e = .37
\]

At best: channel used for useful transmissions 37% of time!
How can A know that a collision has taken place?

- **Worst case:**
 - Latency between nodes A & B is \(d \)
 - A sends a message at time \(t \) and B sends a message at \(t + d - \epsilon \) (just before receiving A’s message)
 - B knows there is a collision, but not A… A must keep transmitting until it can tell if a collision occurred
 - How long? \(2 \times d \)

- **IEEE 802.3 Ethernet** specifies max value of \(2d \) to be 51.2us
 - This relates to maximum distance of 2500m between hosts
 - At 10Mbps it takes 0.1us to transmit one bit so 512 bits take 51.2us to send
 - So, Ethernet frames must be at least 64B (512 bits) long
 - Padding is used if data is too small

- **Send jamming signal to insure all hosts see collision**
 - 48 bit signal
CSMA/CA

- Cannot detect collision w/half-duplex radios
- Wireless MAC protocols often use collision avoidance techniques, in conjunction with a (physical or virtual) carrier sense mechanism
- Collision avoidance
 - Nodes negotiate to reserve the channel.
 - Once channel becomes idle, the node waits for a randomly chosen duration before attempting to transmit.
When A wants to send a packet to B, A first sends a Request-to-Send (RTS) to B.

On receiving RTS, B responds by sending Clear-to-Send (CTS), provided that A is able to receive the packet.

When C overhears a CTS, it keeps quiet for the duration of the transfer.

- Transfer duration is included in both RTS and CTS.
Parting thoughts…

- Good luck finishing up Project 2
 - Don’t use the late days…

- Please complete your CAPE survey online

- Final exam: FRIDAY 8-11 AM

- Good luck and have a great spring break!