Lecture 14 Overview

- Link-state convergence

- Distance vector
 - Assume each router knows its own address and cost to reach each of its directly connected neighbors

- Bellman-Ford algorithm
 - Distributed route computation using only neighbor’s info
Need to remove failed/old links from topology
 - LSPs carry sequence numbers to distinguish new from old
 - Routers only accept (and forward) the “newest” LSP
 - Send a new LSP with cost infinity to signal a link down

But also need to remove entire routers
 - TTL in every LSP, decremented periodically by each router
 - When TTL = 0, purge the LSP and flood the network with an LSP with TTL 0 to tell everyone else to do the same
When to Flood?

- Triggered by a topology change
 - Link or node failure/recovery or
 - Configuration change like updated link metric
 - Converges quickly, but can cause flood of updates

- Periodically
 - Typically (say) every 30 minutes
 - Corrects for possible corruption of the data
 - Limits the rate of updates, but also failure recovery
Convergence

- Getting consistent routing information to all nodes
 - E.g., all nodes having the same link-state database
 - Until routing protocol converges, strange things happen…

- Consistent forwarding after convergence
 - All nodes have the same link-state database
 - All nodes forward packets on shortest paths
 - The next router on the path forwards to the next hop
Transient Disruptions

- Detection delay
 - A node does not detect a failed link immediately
 - … and forwards data packets into a black hole
 - Depends on timeout for detecting lost hellos
Transient Disruptions

- Inconsistent link-state database
 - Some routers know about failure before others
 - The shortest paths are no longer consistent
 - Can cause transient forwarding loops
Convergence Delay

- Sources of convergence delay
 - Detection latency
 - Flooding of link-state information
 - Shortest-path computation
 - Creating the forwarding table

- Performance during convergence period
 - Lost packets due to black holes and TTL expiry
 - Looping packets consuming resources
 - Out-of-order packets reaching the destination

- Very bad for VoIP, online gaming, and video
Reducing Delay

- Faster detection
 - Smaller hello timers
 - Link-layer technologies that can detect failures

- Faster flooding
 - Flooding immediately
 - Sending link-state packets with high-priority

- Faster computation
 - Faster processors on the routers
 - Incremental Dijkstra’s algorithm

- Faster forwarding-table update
 - Data structures supporting incremental updates
Real Link-state Protocols

- OSPF (Open Shortest Path First) and IS-IS
 - Most widely used intra-domain routing protocols
 - Run by almost all ISPs and many large organizations

- Basic link state algorithm plus many features:
 - Authentication of routing messages
 - Extra hierarchy: Partition into routing areas
 » “Border” router pretends to be directly connected to all routers in an area (answers for them)
 - Load balancing: Multiple equal cost routes
Link State evaluation

- **Strengths**
 - Loop free as long as LS database’s are consistent
 - Can have transient routing loops – shouldn’t last long
 - Messages are small
 - Converges quickly
 - Guaranteed to converge

- **Weaknesses**
 - Must flood data across entire network (scalability?)
 - Must maintain state for entire topology (database)
Distance vector algorithm

- **Base assumption**
 - Each router knows its **own address** and the cost to reach each of its **directly connected neighbors**

- **Bellman-Ford algorithm**
 - Distributed route computation using **only neighbor’s info**

- **Mitigating loops**
 - Split horizon and poison reverse
Bellman-Ford Algorithm

- Define distances at each node X
 - $d_x(y) =$ cost of least-cost path from X to Y
- Update distances based on neighbors
 - $d_x(y) = \min \{c(x,v) + d_v(y)\}$ over all neighbors V

\[d_u(z) = \min\{c(u,v) + d_v(z), c(u,w) + d_w(z)\}\]
Distance Vector Algorithm

Iterative, asynchronous: each local iteration caused by:
- Local link cost change
- Distance vector update message from neighbor

Distributed:
- Each node notifies neighbors when its DV changes
- Neighbors then notify their neighbors if necessary

Each node:

1. wait for (change in local link cost or message from neighbor)
2. recompute estimates
3. if distance to any destination has changed, notify neighbors
Step-by-Step

- \(c(x,v) = \) cost for direct link from \(x \) to \(v \)
 - Node \(x \) maintains costs of direct links \(c(x,v) \)

- \(D_x(y) = \) estimate of least cost from \(x \) to \(y \)
 - Node \(x \) maintains distance vector \(D_x = [D_x(y) : y \in N] \)

- Node \(x \) maintains its neighbors’ distance vectors
 - For each neighbor \(v \), \(x \) maintains \(D_v = [D_v(y) : y \in N] \)

- Each node \(v \) periodically sends \(D_v \) to its neighbors
 - And neighbors update their own distance vectors
 - \(D_x(y) \leftarrow \min_v \{ c(x,v) + D_v(y) \} \) for each node \(y \in N \)
Example: Initial State

Info at node

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>7</td>
<td>∞</td>
<td>∞</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>7</td>
<td>0</td>
<td>1</td>
<td>∞</td>
<td>8</td>
</tr>
<tr>
<td>C</td>
<td>∞</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>∞</td>
</tr>
<tr>
<td>D</td>
<td>∞</td>
<td>∞</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>E</td>
<td>1</td>
<td>8</td>
<td>∞</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

CSE 123 – Lecture 14: Distance-vector Routing
D sends vector to E

I’m 2 from C, 0 from D and 2 from E

D is 2 away, 2+2< ∞, so best path to C is 4

CSE 123 – Lecture 14: Distance-vector Routing
B sends vector to A

I'm 7 from A, 0 from B, 1 from C & 8 from E

B is 7 away, 1+7<∞ so best path to C is 8

<table>
<thead>
<tr>
<th>Info at node</th>
<th>Distance to Node</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0 7 8 ∞ 1</td>
</tr>
<tr>
<td>B</td>
<td>7 0 1 ∞ 8</td>
</tr>
<tr>
<td>C</td>
<td>∞ 1 0 2 ∞</td>
</tr>
<tr>
<td>D</td>
<td>∞ ∞ 2 0 2</td>
</tr>
<tr>
<td>E</td>
<td>1 8 4 2 0</td>
</tr>
</tbody>
</table>
E sends vector to A

E is 1 away, 4+1<8
so C is 5 away, 1+2<
∞ so D is 3 away

I’m 1 from A, 8 from B, 4
from C, 2 from D & 0 from E

<table>
<thead>
<tr>
<th>Info at node</th>
<th>Distance to Node</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A B C D E</td>
</tr>
<tr>
<td>A</td>
<td>0 7 5 3 1</td>
</tr>
<tr>
<td>B</td>
<td>7 0 1 ∞ 8</td>
</tr>
<tr>
<td>C</td>
<td>∞ 1 0 2 ∞</td>
</tr>
<tr>
<td>D</td>
<td>∞ ∞ 2 0 2</td>
</tr>
<tr>
<td>E</td>
<td>1 8 4 2 0</td>
</tr>
</tbody>
</table>
...until Convergence

CSE 123 – Lecture 14: Distance-vector Routing
Node B’s distance vectors

<table>
<thead>
<tr>
<th>Dest</th>
<th>A</th>
<th>E</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>7</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>C</td>
<td>12</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>10</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>E</td>
<td>8</td>
<td>8</td>
<td>5</td>
</tr>
</tbody>
</table>
For next time…

- Read Ch. 3.4 in P&D