Last Time: Proving Nonregularity

- Focus on computation path through DFA

Idea: if one long string is accepted, then many other strings have to be accepted too.
Pumping Lemma

If \(A \) is a regular language, then there is a number \(p \) (the pumping length) where, if \(s \) is any string in \(A \) of length at least \(p \), then \(s \) may be divided into three pieces, \(s = x y z \) such that

- \(|y| > 0 \), and
- for each \(i \geq 0 \), \(xy^iz \in A \),
- \(|xy| \leq p \).
Pumping Lemma

If A is a regular language, then there is a number p (the pumping length) where, if s is any string in A of length at least p, then s may be divided into three pieces, $s = x y z$ such that

- $|y| > 0$, and
- for each $i \geq 0$, $x y^i z \in A$,
- $|xy| \leq p$.

Sipser p. 78 Theorem 1.70
Example

Claim: The set \(\{0^j1^k \mid j,k \geq 0 \text{ and } j \geq k \} \) is not regular.

Proof: ...Consider the string \(s = \ldots \) You must pick \(s \) carefully: we want \(|s| \geq p\) and \(s \) in \(L \). Now prove a contradiction with the statement "\(s \) can be pumped"

Which \(s \) and \(i \) let us complete the proof?

A. \(s = 0^p1^p, \ i=2 \quad \) B. \(s = 0^p1^p, \ i=p \quad \) C. \(s = 0^p1^p, \ i=1 \quad \) D. \(s = 0^p1^p, \ i=0 \quad \) E. I don't know
Regular sets: not the end of the story

• Many **nice / simple / important** sets are not regular
• Limitation of the finite-state automaton model
 • Can't "count"
 • Can only remember finitely far into the past
 • Can't backtrack
 • Must make decisions in "real-time"
• We know computers are more powerful than this model…

Which conditions should we relax?
The next model of computation

- **Idea:** allow *some* memory of unbounded size
- **How?**
 - Generalization of regular expressions → **Context-free grammars**
 - Generalization of DFA → **Pushdown Automata**
Context-free grammar

Informally, a collection of rules used to create strings. CFGs generate *languages*.

\[
S \rightarrow aTb \\
T \rightarrow aT \\
T \rightarrow bT \\
T \rightarrow \epsilon
\]

More formally...
Context-free grammar Sipser Def 2.2, page 102

(V, Σ, R, S)

Variables: finite set of (usually upper case) variables, \(V \)

Terminals: finite set of alphabet symbols, \(Σ \) \(\quad) \quad V \cap Σ = \emptyset \)

Rules / Productions: finite set of allowed moves, \(R \)

\[A \rightarrow u \quad A \in V, u \in (V \cup Σ)^* \]

Start variable: one variable, \(S \)

\(S \in V \)
Context-free languageSipser p. 104

The language of a CFG \((V, \Sigma, R, S)\) is

\[
\{ w \in \Sigma^* \mid w \text{ can be made from start variable by applying one or more rules} \}
\]
Context-free language

The **language** of a CFG \((V, \Sigma, R, S)\) is

\[\{ w \in \Sigma^* \mid w \text{ can be made from start variable by applying one or more rules} \} \]

What is the language of the CFG \(\{S\}, \{0\}, R, S\) with rules

\[
S \rightarrow 0S \\
S \rightarrow 0
\]

A. \(\{0, 0S\}\)
B. \(\{0, 00, 000, \ldots\}\)
C. \(\{00, 000, \ldots\}\)
D. \(\{\varepsilon, 0, 00, 000, \ldots\}\)
E. I don't know.
What is the language of the CFG \(\{S\}, \{0,1\}, R, S\) with rules

\[
\begin{align*}
S & \rightarrow 0S \\
S & \rightarrow 1S \\
S & \rightarrow \varepsilon
\end{align*}
\]

A. \(L(0^*1^*)\)
B. \(L(0^* \cup 1^*)\)
C. \(L((0 \cup 1)^*)\)
D. \(L((0^*1^*)^*)\)
E. I don't know.
Designing a CFG

Building a CFG to describe the language \{ abba \}

\[V = \]
\[\Sigma = \]
\[R = \]
\[S = \]

What's the alphabet of this CFG?
A. \{a,b\}
B. \(V \cup S \cup \Sigma\)
C. \{S, a, b\}
D. We get to choose.
E. I don't know.

Can CFGs describe simple sets?
Designing a CFG

Building a CFG to describe the language

\{ abba \}

\[V = \{ S, T, V, W \} \]

\[\Sigma = \{ a, b \} \]

\[R = \{ S \rightarrow aT \quad T \rightarrow bV \quad V \rightarrow bW \quad W \rightarrow a \} \]

S
Designing a CFG – Union

If $G_1 = (V_1, \Sigma, R_1, S_1)$ and $G_2 = (V_2, \Sigma, R_2, S_2)$ are CFGs and G_1 describes L_1, G_2 describes L_2, how can we combine the grammars so we describe $L_1 \cup L_2$?

A. $G = (V_1 \cup V_2, \Sigma, R_1 \cup R_2, S_1 \cup S_2)$
B. $G = (V_1 \times V_2, \Sigma, R_1 \times R_2, (S_1, S_2)$)
C. We might not always be able to: the class of CFG describable languages might not be closed under union.
D. I don't know.
Designing a CFG – Union

If $G_1 = (V_1, \Sigma, R_1, S_1)$ and $G_2 = (V_2, \Sigma, R_2, S_2)$ are CFGs and G_1 describes L_1, G_2 describes L_2, how can we combine the grammars so we describe $L_1 \cup L_2$?
CFL and Regular sets Cor 2.32 Sipser 138

Recall definition of R being a regular expression

1. $R = a$, where $a \in \Sigma$
2. $R = \varepsilon$
3. $R = \emptyset$
4. $R = (R_1 \cup R_2)$, where R_1, R_2 are themselves regular expressions
5. $R = (R_1 \circ R_2)$, where R_1, R_2 are themselves regular expressions
6. (R_1^*), where R_1 is a regular expression.
CFL and Regular sets

Recall definition of R being a regular expression

1. $R = a$, where $a \in \Sigma$
2. $R = \varepsilon$
3. $R = \emptyset$
4. $R = (R_1 \cup R_2)$, where R_1, R_2 are themselves regular expressions
5. $R = (R_1 \circ R_2)$, where R_1, R_2 are themselves regular expressions
6. (R_1^*), where R_1 is a regular expression.
Claim: Given any DFA M, there is a CFG whose language is $L(M)$.

Proof: Trace computation using variables to denote state.
Claim: Given any DFA M, there is a CFG whose language is \(L(M) \).

Proof: Trace computation using variables to denote state

Given \(M = (Q, \Sigma, \delta, q_0, F) \) a DFA, define the CFG

\[
V = \{ S_i \mid q_i \text{ is in } Q \}
\]

\[\Sigma\]

\[R = \{ S_i \rightarrow aS_j \mid \delta(q_i, a) = q_j \} \cup \{ S_i \rightarrow \epsilon \mid q_i \text{ is in } F\}\]

\[S = S_0\]
Regular languages vs. CFL

Every regular language is context-free.
Designing a CFG

Building a CFG to describe the language

\{ a^n b^n \mid n \geq 0 \}
Designing a CFG

Building a CFG to describe the language

\{ a^n b^n \mid n \geq 0 \}

One approach:
- what is shortest string in the language?
- how do we go from shorter strings to longer ones?
Designing a CFG

Building a CFG to describe the language

\{ a^n b^n \mid n \geq 0 \}

V = \{ S, \ldots \}
\Sigma = \{ a, b \}
R =
S

Which rules would complete this CFG?

A. \(S \rightarrow \varepsilon \mid ab \)
B. \(S \rightarrow \varepsilon \mid aS \mid Sb \)
C. \(S \rightarrow \varepsilon \mid aSb \)
D. We need another variable other than S.
E. I don't know.
Designing a CFG

Building a CFG to describe the language

$$\{ 0^n 1^m 2^n | n,m \geq 0 \}$$

Hint: work from the outside in.

Also not a regular set
Designing a CFG

Building a CFG to describe the language

\{ 0^n1^m2^n | n,m \geq 0 \}.

Hint: work from the outside in.

\[V = \{ S, T \} \]
\[\Sigma = \{ 0,1,2 \} \]
\[R = \{ S \rightarrow 0S2 | T | \epsilon, \quad T \rightarrow 1T | \epsilon \} \]

Also not a regular set
CFGs in the wild

V = \{E\}, \Sigma = \{1,+,x,(),\}, R = \{ E \rightarrow E+E | ExE | (E) | 1 \}, S=E

Describing well-formed arithmetic expressions

Which of the followings strings is generated by this CFG?

A. E
B. 11
C. 1+1x1
D. \varepsilon
E. I don't know.
Derivations and parsing

\[E \rightarrow E+E \mid ExE \mid (E) \mid 1 \]

Lots of derivations for 1+1x1

\[E \Rightarrow E + E \Rightarrow E + E \times E \Rightarrow 1 + E \times E \Rightarrow 1 + 1 \times E \Rightarrow 1 + 1 \times 1 \]

\[E \Rightarrow E \times E \Rightarrow E + E \times E \Rightarrow 1 + E \times E \Rightarrow 1 + 1 \times E \Rightarrow 1 + 1 \times 1 \]

\[E \Rightarrow E + E \Rightarrow 1 + E \Rightarrow 1 + E \times E \Rightarrow 1 + 1 \times E \Rightarrow 1 + 1 \times 1 \]
Derivations and parsing

E → E+E | ExE | (E) | 1

leftmost derivation: replace leftmost variable in each step

Which of these derivations is a leftmost derivation?

E ⇒ E + E ⇒ E + E × E ⇒ 1 + E × E ⇒ 1 + 1 × E ⇒ 1 + 1 × 1

E ⇒ E × E ⇒ E + E × E ⇒ 1 + E × E ⇒ 1 + 1 × E ⇒ 1 + 1 × 1

E ⇒ E + E ⇒ 1 + E ⇒ 1 + E × E ⇒ 1 + 1 × E ⇒ 1 + 1 × 1
A string is **ambiguously derived** in a CFG if it has more than one leftmost derivation i.e. more than one **parse tree**
Recap: Context-free languages

Context-free grammar

\[G = (V, \Sigma, R, S) \]

One step of a derivation (replaces a variable according to a rule)

\[uAv \rightarrow uwv \quad \text{where } u, v, w \in (\Sigma \cup V)^* \quad A \rightarrow w \in R \]

Derivation

\[u \rightarrow^* v \quad u = v \text{ or } u \rightarrow u_1 \rightarrow \cdots \rightarrow u_k \rightarrow v \]

Language generated by grammar

\[L(G) = \{w \in \Sigma^* | S \rightarrow^* w\} \]