Proving nonregularity

How can we prove that a language is nonregular?

A. Design a DFA to recognize it and prove that it doesn’t work (that it doesn’t actually recognize the language).
B. Prove that it's a strict subset of some regular language.
C. Prove that it's the union of two regular languages.
D. Prove that its complement is not regular.
E. I don't know.
Where we stand

• There exist nonregular languages.

• If we know that some languages are not regular, we can conclude others are also not regular judiciously reasoning using closure properties of class of regular languages.

• No example of a specific nonregular language ... yet.
Bounds on DFA

• In DFA, memory = states

• Automata can only "remember"...
 • …finitely far in the past
 • …finitely much information

• If a computation path visits the same state more than once, the machine can't tell the difference between the first time and future times it visited that state.
Example!

\{0^n1^n \mid n \geq 0\}

What are some strings in this set?
What are some strings not in this set?

Compare to \(L(0^*1^*)\)
Design a DFA? NFA?
Example!

\[\{ 0^n1^n \mid n \geq 0 \} \]

What are some strings in this set?
What are some strings not in this set?

Compare to \(L(0^*1^*) \)
Design a DFA? NFA?
Pumping

- Focus on computation path through DFA
Pumping

- Focus on computation path through DFA
Pumping

- Focus on computation path through DFA

Idea: if one long string is accepted, then many other strings have to be accepted too.
Pumping Lemma

If A is a regular language, then there is a number p (the pumping length) where, if s is any string in A of length at least p, then s may be divided into three pieces, $s = x \, y \, z$ such that

- $|y| > 0$, and
- for each $i \geq 0$, $xy^i z \in A$,
- $|xy| \leq p$.

Sipser p. 78 Theorem 1.70
Pumping Lemma

If A is a regular language, then there is a number p (the pumping length) where, if s is any string in A of length at least p, then s may be divided into three pieces, $s = x y z$ such that

- $|y| > 0$, and
- for each $i \geq 0$, $xy^i z \in A$,
- $|xy| \leq p$.

states in DFA recognizing A

Transition labels along loop
Using the Pumping Lemma

Claim: The set \(L = \{0^n1^n \mid n \geq 0\} \) is not regular.
Using the Pumping Lemma

Claim: The set \(L = \{0^n1^n \mid n \geq 0\} \) is not regular.

Proof: Assume,
\textbf{towards a contradiction}, that \(L \) is regular.

Pumping Lemma gives property of \textbf{all} regular sets. Can we get a contradiction by assuming that the Pumping Lemma applies to this set?
Using the Pumping Lemma

Claim: The set $L = \{0^n1^n \mid n \geq 0\}$ is not regular.

Proof: Assume, towards a contradiction, that L is regular. Therefore, the Pumping Lemma applies to L and gives us some number p, the pumping length of L. In particular, this means that every string in L that is of length p or more can be "pumped".

...Idea: can we find some long string in L that can't be?
Using the Pumping Lemma

Claim: The set \(L = \{0^n1^n \mid n \geq 0\} \) is not regular.

Proof: ...In particular, this means that every string in \(L \) that is of length \(p \) or more can be "pumped".

Goal: pick a string \(s \) in \(L \) of length greater than or equal to \(p \) such that any division of \(s \) as \(s =xyz \) with \(|y| > 0 \) and \(|xy| \leq p \) gives some value \(i \geq 0 \) with \(xy^iz \) not in \(L \)

So we have a contradiction, and \(L \) is not regular.
Claim: The set \(L = \{0^n1^n | n \geq 0\} \) is not regular.

Proof: …

Goal: pick a string \(s \) in \(L \) of length greater than or equal to \(p \) such that any division of \(s \) as \(s = xyz \) with \(|y| > 0 \) and \(|xy| \leq p \) gives some value \(i \geq 0 \) with \(xy^iz \) not in \(L \).

Choose \(s = 0^p1^p \). Consider any \(s = xyz \) with \(|y| > 0 \), \(|xy| \leq p \).
Using the Pumping Lemma

Claim: The set $L = \{0^n1^n \mid n \geq 0\}$ is not regular.

Proof: …

Goal: pick a string s in L of length greater than or equal to p such that any division of s as $s = xyz$ with $|y| > 0$ and $|xy| \leq p$ gives some value $i \geq 0$ with xy^iz not in L.

Choose $s = 0^p1^p$. Consider any $s = xyz$ with $|y| > 0$, $|xy| \leq p$.

Since $|y| > 0$ and $|xy| \leq p$, y is a nonempty string of 0’s.
Claim: The set $L = \{0^n1^n \mid n \geq 0\}$ is not regular.

Proof: ...

Goal: pick a string s in L of length greater than or equal to p such that any division of s as $s = xyz$ with $|y| > 0$ and $|xy| \leq p$ gives some value $i \geq 0$ with xy^iz not in L.

Choose $s = 0^p 1^p$. Consider any $s = xyz$ with $|y| > 0$, $|xy| \leq p$. Since $|y| > 0$ and $|xy| \leq p$, y is a nonempty string of 0’s. Picking $i = 0$: Then $xy^iz = xz$ has fewer 0’s than 1’s, not in L.
Using the Pumping Lemma

Claim: The set \(L = \{0^n1^n \mid n \geq 0\} \) is not regular.

Proof: …

Goal: pick a string \(s \) in \(L \) of length greater than or equal to \(p \) such that any division of \(s \) as \(s = xyz \) with \(|y| > 0 \) and \(|xy| \leq p \) gives some value \(i \geq 0 \) with \(xy^i z \) not in \(L \)

Choose \(s = 0^p1^p \). Consider any \(s = xyz \) with \(|y| > 0 \), \(|xy| \leq p \).

Since \(|y| > 0 \) and \(|xy| \leq p \), \(y \) is a nonempty string of 0’s.

Picking \(i = 0 \): Then \(xy^i z = xz \) has fewer 0’s than 1’s, not in \(L \).

This contradicts the Pumping Lemma, so \(L \) must not be regular.
KEEP CALM AND TAKE A STEP BACK
General Structure of Proof

Claim: Language L is not regular.

Proof:
Assume towards a contradiction L is regular.

So by Pumping Lemma, L has a pumping length, call it p.

FACT: p is a pumping length for L (by definition).

CLAIM: p is not a pumping length for L.

Conclude: contradiction!
Key Ingredients in Proof

Claim: Language L is not regular.

Proof: Assume, towards a contradiction, that L is regular. By the Pumping Lemma, there is a pumping length p for L. **Consider the string** $s = \ldots$ You must pick s carefully: we want $|s| \geq p$ and s in L. Now prove a contradiction with the statement "s can be pumped". Consider an arbitrary choice of x,y,z such that $s = xyz$, $|y| > 0$, $|xy| \leq p$. **This means that**... What do you know about x,y,z?

Consider $i=\ldots$ In this case, $xy^iz = \ldots$, which is not in L because ... This contradicts the Pumping Lemma, so L is not regular.
"P is not a pumping length for L"
General Structure of Proof

Claim: Language L is not regular.

Proof:

CLAIM: \(p \) is not a pumping length for L.

To prove claim: Prove that

\[
\exists w \left(|w| \geq p \land w \in L \land \forall x \forall y \forall z \left((w = xyz \land |y| > 0 \land |xy| \leq p) \rightarrow \exists i (xy^iz \not\in L) \right) \right)
\]
Another example

Claim: The set \(\{a^mb^na^n | m,n \geq 0 \} \) is not regular.

Proof: ...Consider the string \(s = \ldots \) You must pick \(s \) carefully: we want \(|s| \geq p \) and \(s \) in \(L \). Now prove a contradiction with the statement "\(s \) can be pumped"

Which choices of \(s \) cannot be used to complete the proof?

A. \(s = a^p b^p \)
B. \(s = ab^p a \)
C. \(s = a^p b^p a^p \)
D. \(s = a^p b a^p \)
E. None of the above (all of these choices work).
Another example

Claim: The set \(\{a^m b^m a^n \mid m, n \geq 0\} \) is not regular.

Proof: Consider the string \(s = a^p b a^p \) Check: \(|s| \geq p \) and \(s \) in \(L \).

Now prove a contradiction with the statement "s can be pumped".

Consider an arbitrary choice of \(x, y, z \) such that \(s = xyz \), \(|y| > 0\), \(|xy| \leq p\). This means that \(y \) is a nonempty string of \(a \)'s.

Consider \(i = 2 \). In this case, \(xy^i z = xy^2 z \), which is not in \(L \) because it has more \(a \)'s before the \(b \) than after the \(b \).

This contradicts the Pumping Lemma, so \(L \) is not regular.
And another

Claim: The set \{w w^R \mid w \text{ is a string over } \{0,1\} \} is not regular.

Proof: ...Consider the string \(s = \ldots\). You must pick \(s\) carefully: we want \(|s| \geq p\) and \(s\) in \(L\). Now prove a contradiction with the statement "\(s\) can be pumped".

Which \(s\) and \(i\) let us complete the proof?

A. \(s = 0^p0^p, i=2\)
B. \(s = 0110, i=0\)
C. \(s = 0^p110^p, i=1\)
D. \(s = 1^p001^p, i=3\)
E. I don't know
How do we choose i?

Claim: The set \(\{0^j1^k \mid j,k \geq 0 \text{ and } j \geq k \} \) is not regular.

Proof: ...Consider the string \(s = \ldots \). You must pick \(s \) carefully: we want \(|s| \geq p \) and \(s \) in \(L \). Now prove a contradiction with the statement "\(s \) can be pumped".

Which \(s \) and \(i \) let us complete the proof?

A. \(s = 0^p1^p, i=2 \)
B. \(s = 0^p1^p, i=p \)
C. \(s = 0^p1^p, i=1 \)
D. \(s = 0^p1^p, i=0 \)
E. I don't know
Regular sets: not the end of the story

• Many **nice / simple / important** sets are not regular
• Limitation of the finite-state automaton model
 • Can't "count"
 • Can only remember finitely far into the past
 • Can't backtrack
 • Must make decisions in "real-time"
• We know computers are more powerful than this model…

Which conditions should we relax?